Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(A=\frac{4\left(\sqrt{3}+1\right)}{3-1}-\frac{2\left(\sqrt{2}-\sqrt{3}\right)}{2-3}-\sqrt{8}\)
\(A=\frac{4\left(\sqrt{3}+1\right)}{2}-\frac{2\sqrt{2}-2\sqrt{3}}{-1}-2\sqrt{2}\)
\(A=2\left(\sqrt{3}+1\right)+2\sqrt{2}-2\sqrt{3}-2\sqrt{2}\)
\(A=2\sqrt{3}+2-2\sqrt{3}\)
\(A=2\)
2. Đặt (D): y = ax + b (a khác 0)
(D1): y = -3x + 5
- Vì (D) // (D1): y = -3x+5 \(\Rightarrow\hept{\begin{cases}a=-3\\b\ne5\end{cases}}\)
- Vì (D) cắt (P): y = 2x^2 tại điểm A có hoành độ là -1 \(\Rightarrow x=-1\)
Thay x = -1 vào: y = 2x^2 = 2.(-1)^2 = \(2\)
Thay \(a=-3;x=-1;y=2\)vào:
\(ax+b=y\)
\(\Leftrightarrow-3.\left(-1\right)+b=2\)
\(\Leftrightarrow3+b=2\)
\(\Leftrightarrow b=-1\left(TMĐK\right)\)
Vậy: \(\left(D\right):y=-3x-1\)
tìm x để bt xác định
cho mỗi biểu thức trong căn
lớn hơn hoặc =0
a) ĐKXĐ : \(3x+2\ne0\Leftrightarrow x\ne-\frac{2}{3}\)
b) \(5-2x\ne0\Leftrightarrow x\ne\frac{5}{2}\)
c) \(x+4\ne0\Leftrightarrow x\ne-4\)
d) \(2x-3\ge0\Leftrightarrow x\ge\frac{3}{2}\)
e) Với mọi x là số thực
f) \(\begin{cases}4-x\ge0\\x+1\ge0\end{cases}\) \(\Leftrightarrow-1\le x\le4\)
Đường thẳng \(y=ax+b\) có hệ số góc bằng \(a.\)
Do vậy, đường thẳng \(y=\frac{3x-5}{2}\to y=\frac{3}{2}x-\frac{5}{2}\) có hệ số góc là \(a=\frac{3}{2}.\)
đường thẳng \(y=\frac{3-\sqrt{3}x}{5}=-\frac{\sqrt{3}}{5}x+\frac{3}{5}\) có hệ số góc là \(a=-\frac{\sqrt{3}}{5}.\)