K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2017

tìm x để bt xác định

                               

                                            cho mỗi biểu thức trong căn  

                                                                         

                                                                                                  lớn hơn hoặc =0

                                                    

                                           

25 tháng 7 2018

a,\(x\ge0,x\ne49\)

17 tháng 6 2021

\(a,\hept{\begin{cases}x\ge1\\x\le3\end{cases}}\)

\(1\le x\le3\)thì biểu thức được xác định

\(b,\frac{\sqrt{x-2}}{\sqrt{2x-1}}\)

để biểu thức đc xác định thì

\(\sqrt{x-2}\ge0\)

\(x\ge2\)

\(\sqrt{2x-1}\ne0< =>\sqrt{2x-1}>0\)

\(x>\frac{1}{2}\)

kết hợp điều kiện thì \(x\ge2\)

\(C=\frac{\sqrt{x}-1+\sqrt{x}+1}{x-1}.\frac{2}{\sqrt{x}}\)

\(C=\frac{2\sqrt{x}}{x-1}.\frac{2}{\sqrt{x}}\)

\(C=\frac{4}{x-1}\)

\(< =>x\ne0\)để biểu thức đc xđ

10 tháng 8 2016

a)\(\sqrt{\left(x-1\right)\left(x-3\right)}\ge0\)

\(\Rightarrow\left(x-1\right)\left(x-3\right)\ge0\)

\(\Rightarrow1\le x\le3\)

b)\(\sqrt{x^2-4}\)

\(=\sqrt{x^2-2^2}=\sqrt{\left(x-2\right)\left(x+2\right)}\)

\(\Rightarrow\left(x-2\right)\left(x+2\right)\ge0\)

\(\Rightarrow-2\le x\le2\)

c)\(\sqrt{\frac{x-2}{x+3}}=\frac{\sqrt{x-2}}{\sqrt{x+3}}\)

\(\Rightarrow\sqrt{x-2}\ge0\)

\(\Rightarrow x\ge2\)

\(\Rightarrow\sqrt{x+3}>0\)

\(\Rightarrow x+3>0\Leftrightarrow x>-3\)

\(\Rightarrow x\in\left(-\infty;-3\right)\)U[\(2;\infty\))

d)\(\sqrt{\frac{2+x}{5-x}}=\frac{\sqrt{2+x}}{\sqrt{5-x}}\)

\(\Rightarrow\sqrt{2+x}\ge0\)

\(\Rightarrow2+x\ge0\)

\(\Rightarrow x\ge-2\)

\(\Rightarrow\sqrt{5-x}>0\)

\(\Rightarrow5-x>0\Leftrightarrow x>5\)

\(\Rightarrow x\in\)[-2;5)

 

 

 

 

11 tháng 8 2016

a) ĐKXĐ : \(\left(x-1\right)\left(x-3\right)\ge0\Leftrightarrow\begin{cases}x-1\ge0\\x-3\ge0\end{cases}\)hoặc \(\begin{cases}x-1\le0\\x-3\le0\end{cases}\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x\ge3\\x\le1\end{array}\right.\)

b) \(x^2-4\ge0\Leftrightarrow x^2\ge4\Leftrightarrow\left|x\right|\ge2\Leftrightarrow\left[\begin{array}{nghiempt}x\ge2\\x\le-2\end{array}\right.\)

c) \(\frac{x-2}{x+3}\ge0\Leftrightarrow\begin{cases}x-2\ge0\\x+3>0\end{cases}\) hoặc \(\begin{cases}x-2\le0\\x+3< 0\end{cases}\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x\ge2\\x< -3\end{array}\right.\)

d) \(\frac{2+x}{5-x}\ge0\) \(\Leftrightarrow\begin{cases}2+x\ge0\\5-x>0\end{cases}\) hoặc \(\begin{cases}2+x\le0\\5-x< 0\end{cases}\)

\(\Leftrightarrow-2\le x< 5\)

24 tháng 6 2018

\(a,x\ge2\)

\(b,x\ge-2\)

\(c,x\ge3\)

\(d,x\ge2\)

24 tháng 6 2018

bạn nhi nguyễn "T ích sai cho mình " chứng tỏ bạn rất oc cko :))

6 tháng 9 2019

mọi ng ơi mk viết thiếu dấu ngoặc nha.thiếu ngoặc lownns nha. đóng ngoắc ở trước dấu chia

1. Cho biểu thức:\(C=\frac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+\:1}{\sqrt{x}+\:2}+\frac{\sqrt{x}+2}{1-\sqrt{x}}\)    a) Tìm điều kiện của x để C có nghĩa.    b) Rút gọn C.    c) Tìm các giá trị nguyên của x để giá trị C là số ngueyeenn.2. Cho biểu thức: \(A=x^2-3x\sqrt{y}+2y\)    a) Phân tích A thành nhân tử.    b) Tính giá trị của A khi: \(x=\frac{1}{\sqrt{6}-2}\); \(y=\frac{1}{9+4\sqrt{5}}\)3. Rút gọn rồi tính...
Đọc tiếp

1. Cho biểu thức:

\(C=\frac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+\:1}{\sqrt{x}+\:2}+\frac{\sqrt{x}+2}{1-\sqrt{x}}\)

    a) Tìm điều kiện của x để C có nghĩa.

    b) Rút gọn C.

    c) Tìm các giá trị nguyên của x để giá trị C là số ngueyeenn.


2. Cho biểu thức: \(A=x^2-3x\sqrt{y}+2y\)

    a) Phân tích A thành nhân tử.

    b) Tính giá trị của A khi: \(x=\frac{1}{\sqrt{6}-2}\)\(y=\frac{1}{9+4\sqrt{5}}\)


3. Rút gọn rồi tính giá trị của biểu thức tại \(x=3\)

\(M=\frac{\sqrt{x-2\sqrt{2}}}{\sqrt{x^2-4x\sqrt{2}+8}}-\frac{\sqrt{x+2\sqrt{2}}}{\sqrt{x^2+4x\sqrt{2}+8}}\)


4. Cho biểu thức: ​\(\frac{\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}}{\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1}\)với \(x\ge0\)và \(x\:\ne9\)

    a) Rút gọn P.

    b) Tìm giá trị của x ​để \(P\:< -\frac{1}{2}\)

    c) Tìm giá trị của x ​để P có giá trị nhỏ nhất.


5. Cho biểu thức:

\(Q=\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)

    a) Tìm giá trị của x để Q có nghĩa.

    b) Rút gọn Q.

    c) Tìm giá trị của của x để Q có giá trị nguyên.

4
11 tháng 5 2017

moi tay

8 tháng 6 2017

giải giùm mình bài 5 với