K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2022

a: \(\Leftrightarrow x^4+x^3-x^3-x^2+\left(a+1\right)x^2+\left(a+1\right)x-\left(a+1\right)x-a-1+b⋮x+1\)

=>b=0 và a+1=0

=>a=-1 và b=0

b: \(\dfrac{2x^3+ax+b}{x+1}=\dfrac{2x^3+2x^2-2x^2-2x+\left(a+2\right)x+a+2+b-a-2}{x+1}\)

=>b-a-2=6

\(\dfrac{2x^3+ax+b}{x-1}\)

\(=\dfrac{2x^3-2x^2+2x^2-2x+\left(a+2\right)x-a-2+a+2+b}{x-1}\)

=>a+b+2=21

=>a=11/2; b=27/2

 

17 tháng 8 2020

a) Đặt \(A\left(x\right)=x^4-9x^3+ax^2+x+b\)

Vì \(A\left(x\right)\) chia hết cho \(x^2-x-2\) nên :

\(A\left(x\right)=\left(x^2-x-2\right).Q\left(x\right)\)

\(\Leftrightarrow A\left(x\right)=\left(x-2\right)\left(x+1\right)Q\left(x\right)\) (*)

Lần lượt thay \(x=2,x=-1\) vào (*) ta có :

\(\hept{\begin{cases}2^4-9.2^3+a.2^2+2+b=0\\\left(-1\right)^4-9.\left(-1\right)^3+\left(-1\right)^2.a+\left(-1\right)+b=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}4a+b=54\\a+b=-9\end{cases}\Leftrightarrow}\hept{\begin{cases}a=21\\b=-30\end{cases}}\)

b) Đặt \(B\left(x\right)=x^3+ax+b\)

Vì \(B\left(x\right):\left(x+1\right)\) dư 7 nên : \(B\left(x\right)=\left(x+1\right).H\left(x\right)+7\)

Thay \(x=-1\) vào thì ta có : \(\left(-1\right)^3+a.\left(-1\right)+b=7\Leftrightarrow b-a=8\) (1)

Vì \(B\left(x\right):\left(x-3\right)\) dư -5 nên : \(B\left(x\right)=\left(x-3\right).G\left(x\right)-5\)

Thay \(x=3\) vào thì ta có : \(3^3+3a+b=-5\Leftrightarrow3a+b=-32\) (2)

Từ (1) và (2) suy ra \(\hept{\begin{cases}a=-10\\b=-2\end{cases}}\)

c) Đặt \(C\left(x\right)=ax^3+bx^2+c\)

Vì \(C\left(x\right)⋮x+2\Rightarrow C\left(x\right)=\left(x+2\right).Y\left(x\right)\)

Với \(x=-2\) thì \(\left(-2\right)^3.a+\left(-2\right)^2.b+c=0\)

\(\Leftrightarrow-8a+4b+c=0\) (3)

Lại có : \(C\left(x\right):\left(x^2-1\right)\) thì dư \(x+5\) nên :

\(C\left(x\right)=\left(x^2-1\right).K\left(x\right)+\left(x+5\right)=\left(x-1\right)\left(x+1\right).K\left(x\right)+x+5\)

Với \(x=1\) thì ta có : \(a+b+c=1+5=6\) (4)

Với \(x=-1\) thì ta có : \(-a+b+c=-1+5=4\) (5)

Từ (3) ; (4) và (5) suy ra : \(\hept{\begin{cases}-8a+4b+c=0\\a+b+c=6\\-a+b+c=4\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\b=1\\c=4\end{cases}}}\)

22 tháng 10 2018

undefinedundefinedMời các god xơi câu c

19 tháng 10 2019

c) Cách 1:

x^4+3x^3-x^2+ax+b x^2+2x-3 x^2+x x^4+2x^3-3x^2 - x^3+2x^2+ax+b x^3+2x^2-3x - (a+3)x+b

Để \(P\left(x\right)⋮Q\left(x\right)\)

\(\Leftrightarrow\left(a+3\right)x+b=0\)

\(\Leftrightarrow\hept{\begin{cases}a+3=0\\b=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a=-3\\b=0\end{cases}}\)

Vậy a=-3 và b=0 để \(P\left(x\right)⋮Q\left(x\right)\)

19 tháng 10 2019

a) 

  2n^2-n+2 2n+1 n-1 2x^2+n - -2n+2 -2n-1 - 3

Để \(2n^2-n+2⋮2n+1\)

\(\Leftrightarrow3⋮2n+1\)

\(\Leftrightarrow2n+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Leftrightarrow n\in\left\{0;1;-2;-1\right\}\)

Vậy \(n\in\left\{0;1;-2;-1\right\}\)để \(2n^2-n+2⋮2n+1\)

AH
Akai Haruma
Giáo viên
8 tháng 7 2018

Lời giải:

Theo định lý Bezout về phép chia đa thức thì số dư của \(f(x)=2x^3+ax+b\) cho \(x+1\)\(x-2\) lần lượt là \(f(-1)\)\(f(2)\)

Do đó:

\(\left\{\begin{matrix} f(-1)=-2-a+b=-6\\ f(2)=16+2a+b=21\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} -a+b=-4\\ 2a+b=5\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a=3\\ b=-1\end{matrix}\right.\)

8 tháng 7 2021

Tham khảo ạ !

Sợ cj ko nhìn đc ảnh 

Nguồn : ảnh vietjack 

8 tháng 7 2021

Ta có (x3 + ax2 + 2x + b) : (x2 + x + 1) = x + a - 1 dư x + b - (a - 1)x - a + 1 

Kết hợp giả thiết 

=> x + b - (a - 1)x - a + 1 = x + 1

<=>  -(a - 1)x - (a - b) = 0 

=> \(\hept{\begin{cases}a-1=0\\a-b=0\end{cases}}\Leftrightarrow a=b=1\)

Vậy a = b = 1