K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 10 2018

Lời giải:
Ta sử dụng các công thức hằng đẳng thức đáng nhớ:

\(A=x^3+y^3+z^3+kxyz=(x+y)^3-3xy(x+y)+z^3+kxyz\)

\(=(x+y)^3+z^3-3xy(x+y)+kxyz\)

\(=(x+y+z)^3-3(x+y)z^2-3(x+y)^2z-3xy(x+y)+kxyz\)

\(=(x+y+z)^3-3(x+y)z(z+x+y)-3xy(x+y+z)+(k+3)xyz\)

\(=(x+y+z)^3-3(x+y+z)(xy+yz+xz)+(k+3)xyz\)

\(=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)+(k+3)xyz\)

Vậy để \(A\vdots x+y+z\) thì \((k+3)xyz\vdots x+y+z, \forall x,y,z\)

Điều này xảy ra chỉ khi \(k+3=0\Leftrightarrow k=-3\)

1 tháng 6 2018

gọi thương khi chia đa thức A cho x + y + z là Q, ta có :

x3 + y3 + z3 + kxyz = ( x + y + z ) . Q

đẳng thức trên đúng với mọi x,y,z nên với x = 1, y = 1, z = -2 ta có :

1 + 1 + ( -2 )3 + k . ( -2 ) = ( 1 + 1 - 2 ) . Q \(\Rightarrow\)-6 - 2k = 0 \(\Rightarrow\)k = -3

với k = -3 ta có : x3 + y3 + z3 - 3xyz chia hết cho x + y + z ( thương là x2 + y2 + z2 - xy - yz - zx )

Vậy ...

10 tháng 8 2019

gọi thương khi chia đa thức A cho x + y + z là Q ta có

x^3 =y^3+z^3 +kxyzz =(x + y +z) .Q

đẳng thức trên có thể đúng với các chữ như x,y,z nên x = 1y , 1z = -2 

nên : 

=>k = - 3 ta cs : x^ +y^3 +z^3 - 3xyz chia hết cho x =y +z (thườn là x2 + y2 -xy - z - zx)

Xem lại đề

AH
Akai Haruma
Giáo viên
4 tháng 7 2018

Lời giải:

Ta có:

\(x^3+y^3+z^3+mxyz=(x+y+z)^3-3(x+y)(y+z)(x+z)+mxyz\)

\(=(x+y+z)^3-3[xy(x+y)+yz(y+z)+xz(x+z)+2xyz]+mxyz\)

\(=(x+y+z)^3-3[xy(x+y+z)+yz(x+y+z)+xz(x+y+z)-xyz]+mxyz\)

\(=(x+y+z)^3-3(x+y+z)(xy+yz+xz)+3xyz+mxyz\)

\(=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)+(m+3)xyz\)

Như vậy, để \(x^3+y^3+z^3+mxyz\vdots x+y+z, \forall x,y,z\) thì \((m+3)xyz\vdots x+y+z, \forall x,y,z\)

\(\Rightarrow m+3=0\Rightarrow m=-3\)

5 tháng 7 2018

Cách khác :

Đặt : \(F=x^3+y^3+z^3+mxyz\)

Xem F là một đa thức theo x , kí hiệu : \(F\left(x\right)\)

Vì : \(\left(x+y+z\right)=x-\left(-y-z\right)\)\(F\)\(\left(x+y+z\right)\)

\(F\left(x\right)\text{⋮}\left[x-\left(-y-z\right)\right]\)

\(F\left(-y-z\right)=0\)\(\left(-y-z\right)^3+y^3+z^3+m\left(-y-z\right)yz=0\)

\(-3yz\left(y+z\right)+m\left(-y-z\right)yz=0\)

\(-3yz\left(y+z\right)-m\left(y+z\right)yz\)

\(-yz\left(y+z\right)\left(m+3\right)=0\)

Đẳng thức trên đúng ∀y,z ⇔ m = - 3

12 tháng 2 2018

bài này có 3 cách:    

  • cách phổ thông:   đặt tính chia như sgk
  • cách 2:  phương pháp hệ số bất định
  • cách 3:  phương pháp xét giá trị riêng

bài này để cho ngắn gọn và tiện trình bày thì mk sẽ lm cho bn cách 3 nha

                                            BL

Gọi thương khi chia    \(x^3+ax+b\)   cho    \(x^2+x-2\) là    \(Q\left(x\right)\) ta có:

        \(x^3+ax+b=\left(x-1\right)\left(x+2\right)Q\left(x\right)\)

Vì đẳng thức đúng với mọi x  nên ta lần lượt thay  x = 1;    x = -2     ta được

\(\hept{\begin{cases}1+a+b=0\\-8-2a+b=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}a+b=-1\\-2a+b=8\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}a=-3\\b=2\end{cases}}\)

Vậy...

22 tháng 8 2017

Đa thức bị chia có bậc ba, đa thức chia có bậc hai nên thương là một nhị thức bậc nhất, hạng tử bậc nhất là \(x^3:x^2=x\)

Gọi thương là x + c, ta có:

\(x^3+ax+b=\left(x^2+x-2\right)\left(x+c\right)\)

nên \(x^{ }+ax+b=x^3+\left(c+1\right)x^2+\left(c-2\right)x-2c\)

Hai đa thức bằng nhau nên:

\(\left\{{}\begin{matrix}c+1=0\\c-2=a\\-2c=b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=-1\\a=-3\\b=2\end{matrix}\right.\)

Vậy với a = -3; b = 2 thì \(x^3+ax+b\) chia hết cho \(x^2+x-2\) , thương là x - 1

22 tháng 8 2017

Ta có : \(\left(x^3+ax+b\right)⋮\left(x^2+x-2\right)\)

Gọi ( x+k) là thương của đa thức trên .Ta có :

\(\left(x^3+ax+b\right)=\left(x+k\right)\left(x^2+x-2\right)\)

\(=>x^3+ax+b=x^3+kx^2+x^2+kx-2x-2k\)

\(=>x^3+ax+b=x^3+x^2\left(k+1\right)+x\left(k-2\right)-2k\)

Đồng nhất các hệ số ta có :

\(\left\{{}\begin{matrix}k+1=0\\k-2=a\\b=\left(-2k\right)\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}k=\left(-1\right)\\a=\left(-3\right)\\b=2\end{matrix}\right.\)

Vậy : a= (-3) : b= 2

19 tháng 10 2019

c) Cách 1:

x^4+3x^3-x^2+ax+b x^2+2x-3 x^2+x x^4+2x^3-3x^2 - x^3+2x^2+ax+b x^3+2x^2-3x - (a+3)x+b

Để \(P\left(x\right)⋮Q\left(x\right)\)

\(\Leftrightarrow\left(a+3\right)x+b=0\)

\(\Leftrightarrow\hept{\begin{cases}a+3=0\\b=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a=-3\\b=0\end{cases}}\)

Vậy a=-3 và b=0 để \(P\left(x\right)⋮Q\left(x\right)\)

19 tháng 10 2019

a) 

  2n^2-n+2 2n+1 n-1 2x^2+n - -2n+2 -2n-1 - 3

Để \(2n^2-n+2⋮2n+1\)

\(\Leftrightarrow3⋮2n+1\)

\(\Leftrightarrow2n+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Leftrightarrow n\in\left\{0;1;-2;-1\right\}\)

Vậy \(n\in\left\{0;1;-2;-1\right\}\)để \(2n^2-n+2⋮2n+1\)