Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2 : \(f\left(x\right)=x^3-ax^2+bx-a\)
Áp dụng định lý Bezout ta có:
\(f\left(x\right)⋮\left(x-1\right)\)\(\Rightarrow f\left(1\right)=0\)
\(\Rightarrow1^3-a.1^2+b.1-a=1-a+b-a=0\)
\(\Leftrightarrow1-2a+b=0\)\(\Leftrightarrow2a-b=1\)(1)
\(\Rightarrow3\left(2a-b\right)=3\)\(\Rightarrow6a-3b=3\)(2)
\(f\left(x\right)⋮\left(x-3\right)\)\(\Rightarrow f\left(3\right)=0\)
\(\Rightarrow3^3-a.3^2+3b-a=27-9a+3b-a=0\)
\(\Leftrightarrow27-10a+3b=0\)\(\Leftrightarrow10a-3b=27\)(3)
Từ (2) và (3)
\(\Rightarrow\left(10a-3b\right)-\left(6a-3b\right)=27-3\)
\(\Leftrightarrow10a-3b-6a+3b=24\)
\(\Leftrightarrow4a=24\)\(\Leftrightarrow a=6\)
Thay \(a=6\)vào (1) ta có:
\(2.6-b=1\)\(\Leftrightarrow12-b=1\)\(\Leftrightarrow b=11\)
Vậy \(a=6\)và \(b=11\)
Bài 1:
Câu hỏi của Bạch Quốc Huy - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
Gọi số khẩu trang y tế làm được mỗi ngày là a(a>0) cái/ngày
Số lượng khẩu trang y tế làm được trong 20 ngày là 20a (cái).
Số lượng khẩu trang 3M làm được trong 20 ngày là 10000-20a (cái).
Số khẩu trang 3M làm được trong 1 ngày là : (10000-20a)/20 (cái/ngày).
Theo đề bài, ta có phương trình :
a- (10000-20a)/20=100
<=>20a/20-(10000-20a)/20=100
<=>(20a-10000+20a)/20=100
<=>(40a-10000)/20=100
<=>40a-10000=2000
<=>40a=12000
<=>a=300(cái/ngày).
Vậy đơn vị làm được 300 chiếc khẩu trang y tế 1 ngày và làm được 300-100=200 cái khẩu trang 3M trong 1 ngày.
Ta có:
\(P\left(1\right)=a+b+c+d+1\)
\(P\left(2\right)=8a+4b+2c+d+16\)
\(P\left(3\right)=27a+9b+3c+d+81\)
\(\Rightarrow100P\left(1\right)-198P\left(2\right)+100P\left(3\right)\)
\(=100\left(a+b+c+d+1\right)-198\left(8a+4b+2c+d+16\right)+100\left(27a+9b+3c+d+81\right)\)
\(=1216a+208b+4c+2d+5032=100.10-198.20+100.30=40\)
Ta lại có:
\(f\left(12\right)+f\left(-8\right)=12^4+12^3a+12^2b+12c+d+8^4-8^3a+8^2b-8c+d\)
\(=\left(1216a+208b+4c+2d+5032\right)+19800\)
\(=40+19800=19840\)
\(\Rightarrow P=\frac{19840}{10}+25=2009\)
Đặt \(G\left(x\right)=f\left(x\right)-10x\)\(\Leftrightarrow\hept{f\left(x\right)=G\left(x\right)+10x}\)và \(G\left(x\right)\)có bậc 4 có hệ số cao nhất là 1
Từ đề bài ta có: \(\hept{\begin{cases}G\left(1\right)=f\left(1\right)-10=0\\G\left(2\right)=f\left(2\right)-20=0\\G\left(3\right)=f\left(3\right)-30=0\end{cases}}\)\(\Rightarrow x=1;2;3\)là 3 nghiệm của\(G\left(x\right)\)
\(\Rightarrow G\left(x\right)\)có dạng \(G\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-k\right)\)
\(\Rightarrow\hept{\begin{cases}G\left(12\right)=\left(12-1\right)\left(12-2\right)\left(12-3\right)\left(12-k\right)=11880-990k\\G\left(-8\right)=\left(-8-1\right)\left(-8-2\right)\left(-8-3\right)\left(-8-k\right)=7920+990k\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}f\left(12\right)=G\left(12\right)+12\times10=12000-990k\\f\left(-8\right)=G\left(-8\right)+10\times\left(-8\right)=7840+990k\end{cases}}\)
\(\Rightarrow f\left(12\right)+f\left(-8\right)=12000-990k+7840+990k=19840\)
\(\Rightarrow P=\frac{19840}{10}+25=2009\)