Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>3x^3-x^2+3x^2-x-6x+2+m-2 chia hết cho 3x-1
=>m-2=0
=>m=2
b: =>\(x^4+3x^3-x^2+3x^3+9x^2-3x-x^2+3x-1-6x+a+1⋮x^2+3x-1\)
=>-6x+a+1=0
=>6x=a+1
=>x=(a+1)/6
Mình nghĩ là sửa A = 2x3 + 7x2 + ax + 3 thì sẽ hợp lí hơn :)
A = 2x3 + 7x2 + ax + 3
B = ( x + 1 )2 = x2 + 2x + 1
A bậc 3, B bậc 2 => Thương bậc 1
Hệ số cao nhất của A là 2, hệ số cao nhất của B là 1 => Hệ số cao nhất của thương là 1
Hệ số tự do của A là 3, hệ số tự do của B là 1 => Hệ số tự do của thương là 3
=> Đặt thương là C = 2x + 3
Khi đó A chia hết cho B
⇔ A = BC
⇔ 2x3 + 7x2 + ax + 3 = ( 2x + 3 )( x2 + 2x + 1 )
⇔ 2x3 + 7x2 + ax + 3 = 2x3 + 4x2 + 2x + 3x2 + 6x + 3
⇔ 2x3 + 7x2 + ax + 3 = 2x3 + 7x2 + 8x + 3
⇔ a = 8
Vậy a = 8
Để \(f\left(x\right)=x^4+2x^3-12x^2+7x+2a-10\)chia hết cho \(g\left(x\right)=x^2-3x+2\)thì tồn tại đa thức \(q\left(x\right)\)sao cho \(f\left(x\right)=g\left(x\right)q\left(x\right)\)
Mà ta có \(g\left(x\right)=x^2-3x+2=\left(x-1\right)\left(x-2\right)\)
Suy ra \(g\left(x\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
nên từ đó suy ra \(\hept{\begin{cases}f\left(1\right)=0\\f\left(2\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}2a-12=0\\2a-12=0\end{cases}}\Leftrightarrow a=6\).
Vậy \(a=6\).
Đặt phép chia ta thấy A(x) chia cho B(x) được x^2-2x-1/2 và dư m-3/2
Để A(x) chia hết cho B(x) thì m-3/2=0 <=> m=3/2
(bạn biết cách chia đa thức một biến rồi chứ)