Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2: Vì: 2m - 2n = 256 nên m> n
Đặt m - n = d ( d > 0 )
Ta có : 2m - 2n = 2n ( 2d - 1 ) = 256 = 28.1
=> 2n = 28 và 2d - 1 = 1
=> n = 8 và d = 1
=> m = 1 + 8 = 10
Vậy n = 8 ; m = 9
B1: A=|x-13|+|x-2014|=|x-13|+|2014-x| \(\ge\) |x-13+2014-x| = 2001
Dấu "=" xảy ra khi \(\left(x-13\right)\left(2014-x\right)\ge0\Rightarrow13\le x\le2014\)
Vậy GTNN của A = 2001 khi 13\(\le\)x\(\le\)2014
B2
a, 3n+2-2n+2+3n-2n
=3n.32-2n.22+3n-2n
=3n(9+1)-2n(4+1)
=3n.10-2n.5
=3n.10-2n-1.10
=10(3n-2n-1) chia hết cho 10
b, \(\left(x-7\right)^{x+1}+\left(x-7\right)^{x+11}=0\)
\(\Rightarrow\left(x-7\right)^{x+1}\left[1-\left(x-7\right)^{10}\right]=0\)
\(\Rightarrow\orbr{\begin{cases}\left(x-7\right)^{x+1}=0\\1-\left(x-7\right)^{10}=0\end{cases}\Rightarrow\orbr{\begin{cases}x-7=0\\x-7=\pm1\end{cases}}\Rightarrow x\in\left\{6;7;8\right\}}\)
\(\Leftrightarrow-\dfrac{7}{3}+\dfrac{5}{2}< \left|x-\dfrac{2}{7}\right|< -\dfrac{7}{4}+\dfrac{5}{2}\)
\(\Leftrightarrow\dfrac{1}{6}< \left|x-\dfrac{2}{7}\right|< \dfrac{3}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{6}< x-\dfrac{2}{7}< \dfrac{3}{4}\\-\dfrac{3}{4}< x-\dfrac{2}{7}< -\dfrac{1}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{19}{42}< x< \dfrac{29}{28}\\-\dfrac{13}{28}< x< \dfrac{5}{42}\end{matrix}\right.\)
mà x>0
nên \(\left[{}\begin{matrix}\dfrac{19}{42}< x< \dfrac{29}{28}\\0< x< \dfrac{5}{42}\end{matrix}\right.\)
b) \(\left|2x-5\right|\)= x+1
\(\Rightarrow\) 2x-5 = x+1
\(\Rightarrow\) 2x-x=1+5
\(\Rightarrow\) x = 6
c) \(\left|3x-2\right|\)-1= x
\(\Rightarrow\) 3x-2-1= x
\(\Rightarrow\)3x-x =2+1
\(\Rightarrow\)2x =3
\(\Rightarrow\) x =\(\dfrac{3}{2}\)=1,5
e) \(\left|7-2x\right|\)+7 = 2x
\(\Rightarrow\)7-2x+7 =2x
\(\Rightarrow\) -2x -2x = -7-7
\(\Rightarrow\) -4x = -14
\(\Rightarrow\) x=\(\dfrac{14}{4}\)=\(\dfrac{7}{2}\)
Bài 1:
a, \(2y.\left(y-\dfrac{1}{7}\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}2y=0\\y-\dfrac{1}{7}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=0\\y=\dfrac{1}{7}\end{matrix}\right.\)
Vậy \(y\in\left\{0;\dfrac{1}{7}\right\}\)
b, \(\dfrac{-2}{5}+\dfrac{2}{3}y+\dfrac{1}{6}y=\dfrac{-4}{15}\)
\(\Rightarrow\dfrac{5}{6}y=\dfrac{-4}{15}+\dfrac{2}{5}\)
\(\Rightarrow\dfrac{5}{6}y=\dfrac{2}{15}\)
\(\Rightarrow y=\dfrac{4}{25}\)
Vậy \(y=\dfrac{4}{25}\)
Chúc bạn học tốt!!!
Bài 1:
a, \(2y\left(y-\dfrac{1}{7}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2y=0\\y-\dfrac{1}{7}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=0\\y=\dfrac{1}{7}\end{matrix}\right.\)
Vậy...
b, \(\dfrac{-2}{5}+\dfrac{2}{3}y+\dfrac{1}{6}y=\dfrac{-4}{15}\)
\(\Rightarrow\dfrac{5}{6}y=\dfrac{2}{15}\)
\(\Rightarrow y=\dfrac{4}{25}\)
Vậy...
Bài 2:
a, \(x\left(x-\dfrac{4}{7}\right)>0\)
\(\Rightarrow\left\{{}\begin{matrix}x>0\\x-\dfrac{4}{7}>0\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x< 0\\x-\dfrac{4}{7}< 0\end{matrix}\right.\)
\(\Rightarrow x>\dfrac{4}{7}\left(x\ne0\right)\) hoặc \(x< \dfrac{4}{7}\left(x\ne0\right)\)
Vậy...
Các phần còn lại tương tự nhé
Ai chẳng biết chuyển vế đổi dấu :v
a) \(x-7=4x+10\)
\(x-4x=10+7\)
\(-3x=17\)
\(x=\dfrac{17}{-3}\)
Vậy \(x=\dfrac{17}{-3}\)
b) \(2x+5=-3x+7\)
\(2x+3x=7-5\)
\(5x=2\)
\(x=\dfrac{2}{5}\)
Vậy \(x=\dfrac{2}{5}\)
c) \(x-\left(3x+7\right)=6x-1\)
\(x-3x-7=6x-1\)
\(-2x-7=6x+1\)
\(-7-1=6x+2x\)
\(-8=8x\)
\(x=\dfrac{-8}{8}=-1\)
Vậy \(x=-1\)
d) \(x+\left(5x-1\right)=15\)
\(x+5x-1=15\)
\(6x=15+1\)
\(6x=16\)
\(x=\dfrac{16}{6}=\dfrac{8}{3}\)
Vậy \(x=\dfrac{8}{3}\)
1 , x - 7 = 4x + 10
x - 4x = 10 + 7
- 3x = 17
x = 17 : ( - 3 )
x = \(\dfrac{-17}{3}\)
2 , 2x + 5 = -3x + 7
2x + 3x = 7 -5
5x = 2
x = 2 : 5
x =\(\dfrac{2}{5}\)
3 , x - ( 3x + 7 ) = 6x - 1
x - 3x - 7 = 6x - 1
x - 3x -6x = -1 +7
-8x = 6
x = 6 : ( -8 )
x = \(\dfrac{-3}{4}\)
4 , x + ( 5x -1 ) = 15
x + 5x - 1 = 15
x + 5x = 15 + 1
6x = 16
x = 16 : 6
x = \(\dfrac{8}{3}\)
5 , / x + 1 / = / 2x - 5 /
TH 1 : x + 1 = 2x - 5
x - 2x = -5 -1
- x = -4
= > x = 4
TH 2 : -x -1 = -2x + 5
-x + 2x = 5 + 1
x = 6
6 , / 3x + 8 / - / x -10 / = 0
3x + 8 - x + 10 = 0
3x - x = 0 - 10 - 8
2 x = -18
x = -18 : 2
x = - 9
Lời giải:
$(x+7)^{n+1}-(x+7)^{n-3}=0$
$(x+7)^{n-3}[(x+7)^4-1]=0$
$\Rightarrow (x+7)^{n-3}=0$ hoặc $(x+7)^4-1=0$
Nếu $(x+7)^{n-3}=0$
$\Rightarrow x+7=0\Rightarrow x=-7$
Nếu $(x+7)^4-1=0$
$\Rightarrow (x+7)^4=1=1^4=(-1)^4$
$\Rightarrow x+7=1$ hoặc $x+7=-1$
$\Rightarrow x=-6$ hoặc $x=-8$.