Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giá trị x>0 nguyên thỏa mãn: \(-\frac{7}{3}< \left|\frac{2}{7}-x\right|-\frac{5}{2}< -\frac{7}{4} \)
\(\Leftrightarrow\dfrac{1}{6}< \left|x-\dfrac{2}{7}\right|< \dfrac{3}{4}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left|x-\dfrac{2}{7}\right|< \dfrac{3}{4}\\\left|x-\dfrac{2}{7}\right|>\dfrac{1}{6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{13}{28}< x< \dfrac{29}{28}\\\left[{}\begin{matrix}x>\dfrac{19}{42}\\x< \dfrac{5}{42}\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-\dfrac{13}{28}< x< \dfrac{5}{42}\\\dfrac{19}{42}< x< \dfrac{29}{28}\end{matrix}\right.\)
1. \(\frac{-17}{21}:\left(\frac{5}{4}-\frac{2}{5}\right)< x+\frac{4}{7}< 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\)
\(-\frac{17}{21}:\frac{17}{20}< x+\frac{4}{7}< \frac{7}{12}\)
\(-\frac{20}{21}< x+\frac{4}{7}< \frac{7}{12}\)
\(-\frac{80}{84}< \frac{84x+48}{84}< \frac{49}{84}\)
\(-80< 84x+48< 49\)
\(\begin{cases}-80< 84x+48\\84x+48< 49\end{cases}\)
\(\begin{cases}84x>-128\\84x< 1\end{cases}\)
\(\begin{cases}x>-\frac{32}{21}\\x< \frac{1}{84}\end{cases}\)
\(\Rightarrow-\frac{32}{21}< x< \frac{1}{84}\)
\(-\frac{17}{21}\div\left(\frac{5}{4}-\frac{2}{5}\right)< x+\frac{4}{7}< 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\)
\(-\frac{20}{21}< x+\frac{4}{7}< \frac{7}{12}\)
\(-\frac{32}{21}< x< \frac{1}{84}\)
\(-1^{11}_{21}< x< \frac{1}{84}\)
\(\Rightarrow x\in\left\{-1;0\right\}\)
Vậy x = 0
\(\frac{4}{3}\times1,25\times\left(\frac{16}{5}-\frac{5}{16}\right)< 2x< 4-\frac{4}{3}+3-\frac{3}{2}+2\)
\(\frac{77}{16}< 2x< \frac{37}{6}\)
\(\frac{77}{32}< x< \frac{37}{12}\)
\(2^{13}_{32}< x< 3^1_{12}\)
=> x = 3
\(\Leftrightarrow-\dfrac{7}{3}+\dfrac{5}{2}< \left|x-\dfrac{2}{7}\right|< -\dfrac{7}{4}+\dfrac{5}{2}\)
\(\Leftrightarrow\dfrac{1}{6}< \left|x-\dfrac{2}{7}\right|< \dfrac{3}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{6}< x-\dfrac{2}{7}< \dfrac{3}{4}\\-\dfrac{3}{4}< x-\dfrac{2}{7}< -\dfrac{1}{6}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{19}{42}< x< \dfrac{29}{28}\\-\dfrac{13}{28}< x< \dfrac{5}{42}\end{matrix}\right.\)
mà x>0
nên \(\left[{}\begin{matrix}\dfrac{19}{42}< x< \dfrac{29}{28}\\0< x< \dfrac{5}{42}\end{matrix}\right.\)