Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4+2017x^2+2016x+2017\)
\(=\left(x^4+x^2+1\right)+2016\left(x^2+x+1\right)\)
\(=\left(x^4+2x^2+1-x^2\right)+2016\left(x^2+x+1\right)\)
\(=\left[\left(x^2+1\right)-x^2\right]+2016\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+1\right)+2016\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2017\right)\)
\(x^4+2017x^2+2016x+2017\)
\(=\left(x^4-x\right)+\left(2007x^2+2007x+2007\right)\)
\(=x.\left(x^3-1\right)+2007.\left(x^2+x+1\right)\)
\(=x.\left(x-1\right)\left(x^2+x+1\right)+2007.\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2007\right)\)
Ta có : x^4+2017x^2+2016x+2017
=x^4+x^3-x^3+x^2-x^2+2017x^2+2017x-x+2017
=x^4+x^3+x^2-x^3-x^2-x+2017x^2+2017x+2017
=x^2(x^2+x+1)-x(x^2+x+1)+2017(x^2+x+1)
=(x^2+x+1)(x^2-x+2017)
Nhớ k mk nha
Ta có : x^4+2017x^2+2016x+2017
=x^4+x^3-x^3+x^2-x^2+2017x^2+2017x-x+2017
=x^4+x^3+x^2-x^3-x^2-x+2017x^2+2017x+2017
=x^2(x^2+x+1)-x(x^2+x+1)+2017(x^2+x+1)
=(x^2+x+1)(x^2-x+2017)
chúc cậu hok tốt _@
2017 = 2016 + 1 = x + 1
suy ra 2017x15 = x16 + x15
2017x14 = x15 + x14
....
từ đó ta dễ tính ra A
Đặt 2017x-2016=a; 2016x-2015=b
Theo đề, ta có: \(a^3+b^3=\left(a+b\right)^3\)
\(\Leftrightarrow3ab\left(a+b\right)=0\)
\(\Leftrightarrow x\in\left\{\dfrac{2016}{2017};\dfrac{2015}{2016};\dfrac{4031}{4033}\right\}\)
f(2016)=2016^8 - 2017*2016^7 +2017*2016^6 - 2017*2016^5 +...+2017*2016^2 - 2017*2016+ 2018
=2016^8 -( 2016^8 + 2016) + (2016^7+2016) - (2016^6 + 2016)+....+2016^3+2016 -( 2016^2 + 2016)+2018
=2018
mình đọc chả hiểu gì
có bạn nào giải chi tiết ra được không
\(x^4+2017x^2+2016x+2017\)
\(=x^4+2017x^2-x+2017x+2017\)
\(=\left(x^4-x\right)+\left(2017x^2+2017x+2017\right)\)
\(=x.\left(x^3-1\right)+2017.\left(x^2+x+1\right)\)
\(=x.\left(x^3-x^2+x^2-x+x-1\right)+2017.\left(x^2+x+1\right)\)
\(=x.\left[x^2.\left(x-1\right)+x.\left(x-1\right)+\left(x-1\right)\right]+2017.\left(x^2+x+1\right)\)
\(=x.\left(x-1\right)+\left(x^2+x+1\right)+2017.\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right).\left[x\left(x-1\right)+2017\right]\)
\(=\left(x^2+x+1\right).\left(x^2-x+2017\right)\)
Chúc bạn học tốt!!!
\(x^4+2016x^2+2017x+2016\)
\(=x^4+2016x^2+2016x+x+2016\)
\(=\left(x^4+x\right)+\left(2016x^2+2016x+2016\right)\)
\(=x\left(x^3+1\right)+2016\left(x^2+x+1\right)\)
\(=x\left(x+1\right)\left(x^2+x+1\right)+2016\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2+x+2016\right)\)