K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

=>x^2+6x+9+(4-x)(4+x)=1

=>x^2+6x+8+16-x^2=0

=>6x+24=0

=>x+4=0

=>x=-4

5 tháng 8 2023

(x2+2.x3+32) + (4- x) (4+ x)=1
x2+ 6x + 9 + 16 - x2=1
6x = 1 - 9 -16
6x = -24
x =-4

NV
16 tháng 2 2020

https://hoc24.vn/hoi-dap/question/815591.html

Bạn tham khảo

17 tháng 2 2020

mơn bạn nhìu!!!!!!!!!!!!!!!

8 tháng 9 2017

Đặt \(\hept{\begin{cases}a=x-1\\b=y-1\\c=z-1\end{cases}}\)\(-1\le a,b,c\le1\) và \(a+b+c=0\)

\(T=(a+1)^4+(b+1)^4+(c+1)^4-12abc\)

\(=a^4+b^4+c^4+4(a^3+b^3+c^3)+6(a^2+b^2+c^2)+4(a+b+c)+3-12abc\)

Từ \(a+b+c=0\Rightarrow a^3+b^3+c^3=0\). Do đó:

\(T=a^4+b^4+c^4+6(a^2+b^2+c^2)+3\ge3\)

Xảy ra khi \(a=1;b=-1;c=0\)

8 tháng 9 2017

và các hoán vị nhé dấu = ấy

AH
Akai Haruma
Giáo viên
17 tháng 6 2019

Lời giải:
ĐKXĐ: $x\geq 1$

Đặt \(\sqrt{x-1}=a; \sqrt{x^3+x^2+x+1}=b\)

\(\sqrt{x^4-1}=\sqrt{(x-1)(x^3+x^2+x+1)}=ab\). PT đã cho trở thành:
\(a+b=1+ab\)

\(\Leftrightarrow ab+1-a-b=0\)

\(\Leftrightarrow (a-1)(b-1)=0\Rightarrow \left[\begin{matrix} a=1\\ b=1\end{matrix}\right.\)

Nếu $a=1$: \(\Leftrightarrow \sqrt{x-1}=1\Rightarrow x=1\) (thỏa mãn)

Nếu \(b=1\Leftrightarrow \sqrt{x^3+x^2+x+1}=1\)

\(\Rightarrow x^3+x^2+x=0\) (vô lý với mọi $x\geq 1$)

Vậy PT có nghiệm duy nhất $x=1$

2 tháng 6 2017

\(P=\frac{3\left(x+\sqrt{x}-3\right)}{x+\sqrt{x}-2}+\frac{\sqrt{x}+3}{\sqrt{x}+2}-\frac{\sqrt{x}-2}{\sqrt{x}-1}\left(ĐKXĐ:x\ne1;x\ge0\right)\)

\(P=\frac{3x+3\sqrt{x}-9}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x+3}}{\sqrt{x}+2}-\frac{\sqrt{x}-2}{\sqrt{x}-1}\)

\(P=\frac{3x+3\sqrt{x}-9}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}+\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\frac{x-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(P=\frac{3x+3\sqrt{x}-9+x+2\sqrt{x}-3-x+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(P=\frac{3x-8+5\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(P=\frac{3x-3\sqrt{x}+8\sqrt{x}-8}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(P=\frac{\left(3\sqrt{x}+8\right)\left(\sqrt{x-1}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(P=\frac{\left(3\sqrt{x}+8\right)}{\left(\sqrt{x}+2\right)}\)

b)Để \(P< \frac{15}{4}\)thì \(\frac{\left(3\sqrt{x}+8\right)}{\left(\sqrt{x}+2\right)}< \frac{15}{4}\)

      Ta có:\(\frac{\left(3\sqrt{x}+8\right)}{\left(\sqrt{x}+2\right)}< \frac{15}{4}\)

          \(\Leftrightarrow\frac{\left(3\sqrt{x}+8\right)}{\left(\sqrt{x}+2\right)}-\frac{15}{4}< 0\)

           \(\Leftrightarrow\frac{12\sqrt{x}+32-15\sqrt{x}-30}{4\left(\sqrt{x}+2\right)}< 0\)

            \(\Leftrightarrow\frac{-\left(3\sqrt{x}+2\right)}{4\sqrt{x}+8}< 0\)

                 Vì \(x\ge0;x\ne1\)

                              Do đó \(0< 4\sqrt{x}+8\)

   Mà \(-\left(3\sqrt{x}+2\right)< 0\)

          Vậy \(P< \frac{15}{4}\left(đpcm\right)\)

c)Ta có:\(P=\frac{\left(3\sqrt{x}+8\right)}{\left(\sqrt{x}+2\right)}\)

             \(\Leftrightarrow P=\frac{3\sqrt{x}+6+2}{\left(\sqrt{x}+2\right)}\)

             \(\Leftrightarrow P=\frac{3\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)}+\frac{2}{2\sqrt{x}+2}\)

              \(\Leftrightarrow P=3+\frac{2}{\sqrt{x}+2}\)

Vì \(x\ge0;x\ne1\Rightarrow\frac{2}{\sqrt{x}+2}\le1\)

       Do đó \(P\le4\Leftrightarrow x=1\)

                Vậy Max P=4 khi x=1

2 tháng 6 2017

P=3x+3√x−9(√x−1)(√x+2) +√x+3√x+2 −√x−2√x−1 

P=3x+3√x−9(√x−1)(√x+2) +(√x+3)(√x−1)(√x+2)(√x−1) −x−4(√x−1)(√x+2) 

P=3x+3√x−9+x+2√x−3−x+4(√x−1)(√x+2) 

P=3x−8+5√x(√x−1)(√x+2) 

P=3x−3√x+8√x−8(√x−1)(√x+2) 

P=(3√x+8)(√x−1)(√x−1)(√x+2) 

P=(3√x+8)(√x+2) 

b)Để P<154 thì (3√x+8)(√x+2) <154 

      Ta có:(3√x+8)(√x+2) <154 

          ⇔(3√x+8)(√x+2) −154 <0

           ⇔12√x+32−15√x−304(√x+2) <0

            ⇔−(3√x+2)4√x+8 <0

                 Vì x≥0;x≠1

                              Do đó 0<4√x+8

   Mà −(3√x+2)<0

          Vậy P<154 (đpcm)

c)Ta có:P=(3√x+8)(√x+2) 

             ⇔P=3√x+6+2(√x+2) 

             ⇔P=3(√x+2)(√x+2) +22√x+2 

              ⇔P=3+2√x+2 

Vì x≥0;x≠1⇒2√x+2 ≤1

       Do đó