K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2020

\(x^3+x^2-36=0\)

\(\Leftrightarrow\left(x^3-3x^2\right)+\left(4x^2-12x\right)+\left(12x-36\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x^2+4x+12\right)=0\)

Mà \(x^2+4x+12=\left(x^2+4x+4\right)+8=\left(x+2\right)^2+8\ge0\forall x\)

\(\Rightarrow x-3=0\)

\(\Leftrightarrow x=3\)

Vậy x=3

18 tháng 2 2020

TL:

x^3+x^2-36=0
x^3+(x^2-6^2)=0
x^3(x-6)(x+6)=0
=>x^3=0 hoặc x-6=0 hoặc x+6=0
x=0 hoặc x=6 hoặc x=-6

3 tháng 10 2023

1, \(x^2\) - 9 = 0

 (\(x\) - 3)(\(x\) + 3) = 0

 \(\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)

 vậy \(x\) \(\in\) {-3; 3}

 

  

 

3 tháng 10 2023

5, 4\(x^2\) - 36 = 0

    4.(\(x^2\) - 9) = 0

       \(x^2\) - 9 = 0

       (\(x\) - 3)(\(x\) + 3) = 0

        \(\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\)

        \(\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)

Vậy \(x\) \(\in\) {-3; 3}

 

 

30 tháng 7 2019

\(\left(y-2\right)\left(y-3\right)+\left(y-2\right)-1=0\)

\(\Leftrightarrow\left(y-2\right)\left(y-3\right)+\left(y-3\right)=0\)

\(\Leftrightarrow\left(y-3\right)^2=0\)

\(\Leftrightarrow y=3\)

\(x^3+27+\left(x+3\right)\left(x-9\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9+x-9\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2-2x\right)=0\)

\(\Leftrightarrow\left(x+3\right)x\left(x-2\right)=0\)

\(\Leftrightarrow x\in\left\{0;-3;2\right\}\)

30 tháng 7 2019

Bài làm

Vì ( y - 2 ) . ( y - 3 ) + ( y - 2 ) - 1 = 0

=> ( y - 2 ) = 0 hoặc ( y - 3 ) + ( y - 2 ) - 1 = 0

=> y = 2 hoặc y = 3 

Vậy y = 2 hoặc y = 3

~ Mấy câu còn lại làm tương tự. Làm theo mẫu câu a . b = 0 , => a = 0 hoặc b = 0. ~
# Chúc bạn học tốt # 

19 tháng 9 2020

\(x^3-4x^2-9x+36=0\)

=> \(x^2\left(x-4\right)-9\left(x-4\right)=0\)

=> \(\left(x-4\right)\left(x^2-9\right)=0\)

=> \(\orbr{\begin{cases}x-4=0\\x^2-9=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=4\\x=\pm3\end{cases}}\)

\(\left(x^2-9\right)^2-\left(x-3\right)^2=0\)

=> \(\left(x^2-9+x-3\right)\left[x^2-9-\left(x-3\right)\right]=0\)

=> \(\left(x^2+x-12\right)\left(x^2-9-x+3\right)=0\)

=> \(\left(x^2+x-12\right)\left(x^2-x-6\right)=0\)

=> \(\left(x^2-3x+4x-12\right)\left(x^2+2x-3x-6\right)=0\)

=> \(\left[x\left(x-3\right)+4\left(x-3\right)\right]\left[x\left(x+2\right)-3\left(x+2\right)\right]=0\)

=> \(\left(x-3\right)\left(x+4\right)\left(x-3\right)\left(x+2\right)=0\)

=> \(\left(x-3\right)^2\left(x+4\right)\left(x+2\right)=0\)

=> \(\hept{\begin{cases}\left(x-3\right)^2=0\\x+4=0\\x+2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=3\\x=-4\\x=-2\end{cases}}\)

\(x^3-3x+2=0\)

=> \(x^3-x-2x+2=0\)

=> \(x^2\left(x-1\right)-2\left(x-1\right)=0\)

=> \(\left(x-1\right)\left(x^2-2\right)=0\)

=> x = 1

a, 4x2 - 49 = 0

⇔⇔ (2x)2 - 72 = 0

⇔⇔ (2x - 7)(2x + 7) = 0

⇔{2x−7=02x+7=0⇔⎧⎪ ⎪⎨⎪ ⎪⎩x=72x=−72⇔{2x−7=02x+7=0⇔{x=72x=−72

b, x2 + 36 = 12x

⇔⇔ x2 + 36 - 12x = 0

⇔⇔ x2 - 2.x.6 + 62 = 0

⇔⇔ (x - 6)2 = 0

⇔⇔ x = 6

e, (x - 2)2 - 16 = 0

⇔⇔ (x - 2)2 - 42 = 0

⇔⇔ (x - 2 - 4)(x - 2 + 4) = 0

⇔⇔ (x - 6)(x + 2) = 0

⇔{x−6=0x+2=0⇔{x=6x=−2⇔{x−6=0x+2=0⇔{x=6x=−2

f, x2 - 5x -14 = 0

⇔⇔ x2 + 2x - 7x -14 = 0

⇔⇔ x(x + 2) - 7(x + 2) = 0

⇔⇔ (x + 2)(x - 7) = 0

⇔{x+2=0x−7=0⇔{x=−2x=7

11 tháng 3 2020

a) (x + 6)(3x + 1) + x- 36 = 0

<=> 3x2 + x + 18x + 6 + x2 - 36 = 0

<=> 4x2 + 19x - 30 = 0

<=> 4x2 + 24x - 5x - 30 = 0

<=> 4x(x + 6) - 5(x + 6) = 0

<=> (x + 6)(4x - 5) = 0

<=> x + 6 = 0 hoặc 4x - 5 = 0

<=> x = -6 hoặc x = 5/4

11 tháng 3 2020

Bài 1 mình đã làm xong rồi, anh em nào giúp mình bài 2 với!

14 tháng 2 2015

a/  (4x-1)(x-3)-(x-3)(5x+2)=0

<=> (x-3)(4x-1-5x-2)=0

<=> (x-3)(-x-3)=0

<=> x-3=0 hoặc -x-3=0

<=> x=3 hoặc x= -3

b/   (x+6)(3x-1)+ x^2 -36 =0

<=>  (x+6)(3x-1) + (x-6)(x+6)=0

<=>  (x+6)(3x-1+x-6)=0

<=>  (x+6)(4x-7)=0

<=>  x+6=o hoặc 4x-7=0

<=>  x= -6 hoặc x= 7/4

c/   (x+3)(x+5)+(x+3)(3x-4)=0

<=>  (x+3)(x+5+3x-4)=0

<=>  (x+3)(4x+1)=0

<=>  x+3=0 hoặc 4x+1=0

<=>  x= -3 hoặc x=-1/4

 

 

8 tháng 8 2017

6ax^2 - 36ax + 544

1 tháng 8 2017

a)  \(5\left(x+3\right)-6x-2x^2=0\)   \(\Leftrightarrow5.\left(x+3\right)-2x.\left(x+3\right)=0\) 

\(\Leftrightarrow\left(x+3\right)\left(5-2x\right)=0\Leftrightarrow\hept{\begin{cases}x+3=0\\5-2x=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-3\\2x=5\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-3\\x=\frac{5}{2}\end{cases}}}\)

b)  \(6x.\left(x^2-2\right)-\left(2-x^2\right)=0\)  \(\Leftrightarrow6x.\left(x^2-2\right)+\left(x^2-2\right)=0\)

\(\Leftrightarrow\left(x^2-2\right)\left(6x+1\right)=0\Leftrightarrow\hept{\begin{cases}x^2-2=0\\6x+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2=2\\6x=-1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\sqrt{2}\\x=\frac{-1}{6}\end{cases}}}\)

c)  \(4x.\left(x-2017\right)-x+2017=0\) \(\Leftrightarrow4x.\left(x-2017\right)-\left(x-2017\right)=0\)

\(\Leftrightarrow\left(x-2017\right).\left(4x-1\right)=0\) \(\Leftrightarrow\hept{\begin{cases}x-2017=0\\4x-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2017\\4x=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2017\\x=\frac{1}{4}\end{cases}}}\)

d)  \(12x=x^2+36\) \(\Leftrightarrow x^2-12x+36=0\) \(\Leftrightarrow\left(x-6\right)^2=0\) \(\Rightarrow x-6=0\) \(\Leftrightarrow x=6\)