K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2021

Áp dụng t/c dtsbn:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x^2}{4}=\dfrac{2y^2}{18}=\dfrac{z^2}{25}=\dfrac{x^2-2y^2+z^2}{4-18+25}=\dfrac{44}{11}=4\\ \Leftrightarrow\left\{{}\begin{matrix}x=8\\y=12\\z=20\end{matrix}\right.\)

14 tháng 5 2017

Có: \(\frac{y-2}{3}=\frac{2y-4}{6}\)

\(\frac{z-3}{4}=\frac{3z-9}{12}\)

Suy ra\(\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}=\frac{\left(x-1\right)-\left(2y-4\right)+\left(3z-9\right)}{2-6+12}\)

\(=\frac{\left(x-2y+3z\right)-6}{8}=\frac{14-6}{8}=1\)

Vậy có \(\frac{x-1}{2};\frac{y-2}{3};\frac{z-3}{4}=1\)Thay vào có x=3; y=5; z=7

23 tháng 1 2024

a) x : 2 = y : (-5)

⇒ x/2 = y/(-5)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

x/2 = y/(-5) = (x - y)/(2 + 5) = 14/7 = 

x/2 = 2 ⇒ x = 2.2 = 4

y/(-5) = 2 ⇒ y = 2.(-5) = -10

Vậy x = 4; y = -10

b) Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

x/2 = y/5 = z/6 = (x - y + z)/(2 - 5 + 6) = 24/3 = 8

x/2 = 8 ⇒ x = 8.2 = 16

y/5 = 9 ⇒ y = 8.5 = 40

z/6 = 8 ⇒ z = 8.6 = 48

Vậy x = 16; y = 40; z = 48

c) 2x = 3y = 6z

⇒ x/(1/2) = y/(1/3) = z/(1/6)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

x/(1/2) = y/(1/3) = z/(1/6) = (x + y - z)/(1/2 + 1/3 - 1/6) = 8/(2/3) = 12

2x = 12 ⇒ x = 12 : 2 = 6

3y = 12 ⇒ y = 12 : 3 = 4

6z = 12 ⇒ z = 12 : 6 = 2

Vậy x = 6; y = 4; z = 2

23 tháng 1 2024

d) x/3 = y/2 = z/(-3)

⇒ 2x/6 = 3y/6 = 4z/(-12)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

2x/6 = 3y/6 = 4z/(-12) = (2x - 3y + 4z)/(6 - 6 - 12) = 48/(-12) = -4

x/3 = -4 ⇒ x = -4.3 = -12

y/2 = -4 ⇒ y = -4.2 = -8

z/(-3) = -4 ⇒ z = -4.(-3) = 12

Vậy x = -12; y = -8; z = 12

e) Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

x/5 = y/6 = z/7 = (x - y)/(5 - 6) = 36/(-1) = -36

x/5 = -36 ⇒ x = -36.5 = -180

y/6 = -36 ⇒ y = -36.6 = -216

z/7 = -36 ⇒ z = -36.7 = -252

Vậy x = -180; y = -216; z = -252

f) x/12 = y/13

⇒ 3x/36 = 2y/26

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

3x/36 = 2y/26 = (3x + 2y)/(36 + 26) = 52/62 = 26/31

x/12 = 26/31 ⇒ x = 26/31 . 12 = 312/31

y/13 = 26/31 ⇒ y = 26/31 . 13 = 338/31

z/15 = 26/31 ⇒  z = 26/31 . 15 = 390/31

Vậy x = 312/31; y = 338/31; z = 390/31

27 tháng 10 2016

a) \(\Rightarrow\frac{2x}{3}.\frac{1}{12}=\frac{3y}{4}.\frac{1}{12}=\frac{4z}{5}.\frac{1}{12}\)

\(\Rightarrow\frac{x}{18}=\frac{y}{16}=\frac{z}{15}\)

Ánh dụng tính chất của dãy tỉ số bằng nhau :

\(\Rightarrow\frac{x}{18}=\frac{y}{16}=\frac{z}{15}=\frac{x+y+z}{18+16+15}=\frac{49}{49}=1\)

\(\Rightarrow\) x = 1 . 18 = 18

y = 1 . 16 = 16

z = 1 . 15 = 15

b)

Từ 4x = 3y ; 7y=5z => \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)

\(\Rightarrow\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\left(1\right)\)

\(\Rightarrow\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}\left(2\right)\)

Từ (1) và (2)

\(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}\)

Áp dụng tính chất của dãy tỉ số bằng nhau :

\(\Rightarrow\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{124}{62}=2\)

\(\Rightarrow\) x = 2 . 15 = 30

y = 2 . 20 = 40

z = 2 . 28 = 56

c) từ 10x=6y \(\Rightarrow\) \(\frac{x}{6}=\frac{y}{10}\) \(\left(\frac{x}{6}\right)^2\)=\(\left(\frac{y}{10}\right)^2\) \(\Rightarrow\frac{x^2}{36}\)=\(\frac{y^2}{100}\) \(\Rightarrow\frac{2x^2}{72}=\frac{y^2}{100}\)

áp dụng tính chất của dãy tỉ số bằng nhau :

\(\frac{2x^2-y^2}{72-100}\) = \(\frac{-28}{-28}\) = 1

\(\Rightarrow\frac{x}{6}=1\) ; \(\frac{y}{10}=1\)

\(\Rightarrow x=6;y=10\)

hoặc \(\Rightarrow\frac{x}{6}=-1;\frac{y}{10}=-1\)

\(\Rightarrow x=-6;y=-10\)

Chúc bạn học tốt

27 tháng 10 2016

de ma

 

10 tháng 9 2016

dùng tính chất tỉ lệ thức: a/b = c/d = e/f = (a+b+c)/(b+d+f) (có b+d+f # 0) 
* trước tiên ta xét trường hợp x+y+z = 0 có 
x/(y+z+1) = y/(x+z+1) = z/(x+y-2) = 0 => x = y = z = 0 
* xét x+y+z = 0, tính chất tỉ lệ thức: 
x+y+z = x/(y+z+1) = y/(x+z+1) = z/(x+y-2) = (x+y+z)/(2x+2y+2z) = 1/2 
=> x+y+z = 1/2 và: 
+ 2x = y+z+1 = 1/2 - x + 1 => x = 1/2 
+ 2y = x+z+1 = 1/2 - y + 1 => y = 1/2 
+ z = 1/2 - (x+y) = 1/2 - 1 = -1/2 

Vậy có căp (x,y,z) thỏa mãn: (0,0,0) và (1/2,1/2,-1/2) 

10 tháng 9 2016

dùng tính chất tỉ lệ thức: a/b = c/d = e/f = (a+b+c)/(b+d+f) (có b+d+f # 0) 
* trước tiên ta xét trường hợp x+y+z = 0 có 
x/(y+z+1) = y/(x+z+1) = z/(x+y-2) = 0 => x = y = z = 0 
* xét x+y+z = 0, tính chất tỉ lệ thức: 
x+y+z = x/(y+z+1) = y/(x+z+1) = z/(x+y-2) = (x+y+z)/(2x+2y+2z) = 1/2 
=> x+y+z = 1/2 và: 
+ 2x = y+z+1 = 1/2 - x + 1 => x = 1/2 
+ 2y = x+z+1 = 1/2 - y + 1 => y = 1/2 
+ z = 1/2 - (x+y) = 1/2 - 1 = -1/2 

Vậy có căp (x,y,z) thỏa mãn: (0,0,0) và (1/2,1/2,-1/2) 

8 tháng 10 2021

x:y:z=4:5:6

--> x/4=y/5=z/6

Đặt x=4k; y=5k; z=6k

x^2-2y^2+z^2=18

(4k)^2-2.(5k)^2+(6k)^2=18

2k^2=18

k^2=9

k=3 hoặc k=-3

Khi k=3

--> x=4.3=12

y=5.3=15

z=6.3=18

Khi k=-3

--> x=4.(-3)=-12

y=5.(-3)=-15

z=6.(-3)=-18