Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3x=2y=z\Rightarrow\frac{z}{6}=\frac{x}{2}=\frac{y}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{z}{6}=\frac{x}{2}=\frac{y}{3}=\frac{x+y+z}{6+2+3}=\frac{99}{11}=9\)
\(\Rightarrow\hept{\begin{cases}z=54\\x=18\\y=27\end{cases}}\)
x/2=y/3;y/2=z/5 => x/2=2y/6;3y/6=z/5 => x/4=y/6=z/15
adtcdtsbn:
x/4=y/6=z/15=x+y+z/4+6+15=50/25=2
suy ra : x/4=2=>x=4.2=8
y/6=2=>y=2.6=12
z/15=2 => z=15.2=30
Các phần còn lại check lại đề bài.
b) Áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+z}{2+4}=\frac{18}{6}=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=3\Rightarrow x=6\\\frac{y}{3}=3\Rightarrow y=9\\\frac{z}{4}=3\Rightarrow z=12\end{cases}}\)
d) Áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{z+3}{5}=\frac{x+y+z+6}{3+4+5}=\frac{24}{12}=2\)
\(\Rightarrow\hept{\begin{cases}x+1=6\\y+2=8\\z+3=10\end{cases}}\Rightarrow\hept{\begin{cases}x=5\\y=6\\z=7\end{cases}}\)
+) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)
=> \(\hept{\begin{cases}\frac{x^2}{9}=4\\\frac{y^2}{16}=4\end{cases}}\) => \(\hept{\begin{cases}x^2=4.9=36\\y^2=4.16=64\end{cases}}\) => \(\hept{\begin{cases}x=\pm6\\y=\pm8\end{cases}}\)
Vậy ...
Answer:
1.
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\)
\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
\(\Rightarrow2\frac{x}{30}=3\frac{y}{60}=\frac{z}{28}\)
Áp dụng tính chất của dãy tỷ số bằng nhau
\(2\frac{x}{30}+3\frac{y}{60}+\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=3\)
\(\Rightarrow2\frac{x}{30}=3\Rightarrow x=45\)
\(\Rightarrow3\frac{y}{60}=3\Rightarrow y=60\)
\(\Rightarrow\frac{z}{28}=3\Rightarrow z=84\)
2.
Ta đặt: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\)
\(\Rightarrow x=2k\)
\(\Rightarrow y=3k\)
\(\Rightarrow z=4k\)
\(\Rightarrow xyz=2k.3k.4k=24.k^3=648\)
\(\Rightarrow k^3=27\Rightarrow k=3\)
\(\Rightarrow\frac{x}{2}=3\Rightarrow x=6\)
\(\Rightarrow\frac{y}{3}=3\Rightarrow y=9\)
\(\Rightarrow\frac{z}{4}=3\Rightarrow z=12\)
3.
\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)
\(4x=2z\Rightarrow\frac{x}{2}=\frac{z}{4}\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) và \(x+y+z=27\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=3\)
\(\Rightarrow\frac{x}{2}=3\Rightarrow x=6\)
\(\Rightarrow\frac{y}{3}=3\Rightarrow y=9\)
\(\Rightarrow\frac{z}{4}=3\Rightarrow z=12\)
a) Ta có : \(\frac{x}{y}=\frac{4}{9}\Rightarrow\frac{x}{4}=\frac{y}{9}\Rightarrow\frac{3x}{12}=\frac{2y}{18}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{3x}{12}=\frac{2y}{18}=\frac{3x-2y}{12-18}=\frac{12}{-6}=-2\)
=> \(\hept{\begin{cases}x=\left(-2\right)\cdot4=-8\\y=\left(-2\right)\cdot9=-18\end{cases}}\)
b) Ta có : \(\frac{y}{4}=\frac{x}{-3}\Rightarrow\frac{x}{-3}=\frac{y}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{-3}=\frac{y}{4}=\frac{x-y}{\left(-3\right)-4}=\frac{7}{-7}=-1\)
=> \(\hept{\begin{cases}x=\left(-1\right)\cdot\left(-3\right)=3\\y=\left(-1\right)\cdot4=-4\end{cases}}\)
c) Ta có : \(x=-2y\Rightarrow\frac{x}{-2}=\frac{y}{1}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{-2}=\frac{y}{1}=\frac{x-y}{-2-1}=\frac{-3}{-3}=1\)
=> \(\hept{\begin{cases}x=1\cdot\left(-2\right)=-2\\y=1\end{cases}}\)
d) Ta có : \(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{2x}{4}=\frac{y}{5}=\frac{z}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{4}=\frac{y}{5}=\frac{z}{7}=\frac{2x+y-z}{4+5-7}=\frac{2}{2}=1\)
=> \(\hept{\begin{cases}x=1\cdot2=2\\y=1\cdot5=5\\z=1\cdot7=7\end{cases}}\)
\(\dfrac{x}{2}=\dfrac{y}{3}\) ⇒ \(x\) = \(\dfrac{2}{3}\).y; \(\dfrac{y}{4}\) = \(\dfrac{z}{5}\) ⇒ z = \(\dfrac{5}{4}.y\)
Thay \(x\) = \(\dfrac{2}{3}.y\) và z = \(\dfrac{5}{4}.y\) vào biểu thức 3\(x\) + 2y - z = 66 ta có:
3.\(\dfrac{2}{3}\).y + 2.y - \(\dfrac{5}{4}\).y = 66
y.(2 + 2 - \(\dfrac{5}{4}\)) = 66
y.\(\dfrac{11}{4}\) = 66
y = 66 : \(\dfrac{11}{4}\)
y = 24
\(x\) = 24.\(\dfrac{2}{3}\) = 16
z = 24. \(\dfrac{5}{4}\) = 30
Vậy (\(x;;y;z\)) = (16; 24; 30)