K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

P=(x+2y)^2+2(x+2y)+1+(x+2y)^2+10(x+2y)+25

=2[(x+2y)^2+6(x+2y)+13]

=2(x+2y+3)^2+8>=8

Dấu = xảy ra khi x=-2y-3

 

22 tháng 9 2018

\(x-2y=5\Rightarrow x=5+2y\)

\(\Rightarrow M=x^2-3y^2-4y-1=\left(5+2y\right)^2-3y^2-4y-1\)

\(=\left(4y^2+20y+25\right)-3y^2-4y-1\)

\(=y^2+16y+24\)

\(=\left(y^2+16y+64\right)-40\)

\(=\left(y+8\right)^2-40\ge-40\)

Dấu "=" xảy ra \(\Leftrightarrow\left(y+8\right)^2=0\Leftrightarrow y=-8\Rightarrow x=2y+5=-16+5=-11\)

Vậy GTNN của M là -40\(\Leftrightarrow x=-11;y=-8\)

16 tháng 10 2015

Bài 1 bạn phải dùng BDT Bunhiacopxki : ( ax +by )2 <= ( nhỏ hơn bằng ) ( a2 + b)( x2 + Y2 )

Ở đây hệ số của x là 1 nên a là 1.

Ta có: ( x + 2y )<= ( 12 + (căn2)) ( x+ ( căn 2 )2y2 )

=> 1 <= 3 ( x2 + 2y)

=> x2 + 2y>= 1/3

29 tháng 10 2016

Ta có

\(\frac{x^2+4y^2}{x-2y}=\frac{x^2+4y^2-4xy+4xy}{x-2y}=\frac{\left(x-2y\right)^2}{x-2y}+\frac{4}{x-2y}\)

\(=x-2y+\frac{4}{x-2y}\)

Áp dụng bđt Cauchy cho hai số không âm, ta có

\(x-2y+\frac{4}{x-2y}\ge2\sqrt{\left(x-2y\right)\times\frac{4}{x-2y}}=2\sqrt{4}=4\)

Suy ra Pmin = 4

Dấu bằng xảy ra khi và chỉ khi \(x-2y=\frac{4}{x-2y}\Leftrightarrow\left(x-2y\right)^2=4\Leftrightarrow x-2y=2\)

( do x - 2y \(\ge0\) )

 

26 tháng 10 2020

tìm gtnn của biểu thức q=1/2(x^10/y^2 + y^10/x^2)+1/4(x^16 + y^16) - (1+ x^2y^2 )^2 

ai giúp mk vs 

31 tháng 12 2018

Akai Haruma

31 tháng 12 2018

bạn kt hộ mình nhé

https://hoc24.vn/hoi-dap/question/647384.html