Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(x^2+3x+1=t\)
\(\Rightarrow\left(x^2+3x+1\right)\left(x^2+3x+2\right)-6=t.\left(t+1\right)-6\)
\(=t^2+t-6=\left(t^2-2t\right)+\left(3t-6\right)\)
\(=t\left(t-2\right)+3\left(t-2\right)=\left(t-2\right)\left(t+3\right)\)
\(=\left(x^2+3x+1-2\right)\left(x^2+3x+1+3\right)\)
\(=\left(x^2+3x-1\right)\left(x^2+3x+4\right)\)
\(A=\left(x^2+3x+1\right)\left(x^2+3x+2\right)-6\)
Đặt \(x^2+3x+1=a\)ta có :
\(a\left(a+1\right)-6\)
\(=a^2+a-6\)
\(=a^2+6a-a-6\)
\(=\left(a^2+6a\right)-\left(a+6\right)\)
\(=a\left(a+6\right)-\left(a+6\right)\)
\(=\left(a+6\right)\left(a-1\right)\)
Thay \(a=x^2+3x+1\)vào A ta có :
\(A=\left(x^2+3x+1+6\right)\left(x^2+3x+1-1\right)\)
\(=\left(x^2+3x+7\right)\left(x^2+3x\right)\)
bạn hãy dùng máy tính tìm nghiệm là đc bạn nhé ! như vậy sẽ nhanh hơn !
\(\left(x+3\right)^2-\left(2x+6\right)\left(1-3x\right)+\left(3x+1\right)^2\)
\(=x^2+6x+9-\left(2x-6x^2+6-18x\right)+9x^2+6x+1\)
\(=10x^2+12x+10+6x^2+16x-6=16x^2+28x+4\)
\(=4\left(4x^2+7x+1\right)\)
\(\left(x^2+3x+1\right)\left(x^2+3x+2\right)-6\)
Đặt \(x^2+3x+1=a,\)ta được:
\(a\left(a+1\right)-6\)
\(=a^2+a-6=\left(a^2+3a\right)-\left(2a+6\right)\)
\(=a\left(a+3\right)-2\left(a+3\right)=\left(a+3\right)\left(a-2\right)\)
Thay \(a=x^2+3x+1,\)ta được:
\(\left(x^2+3x+1+3\right)\left(x^2+3x+1-2\right)\)\(=\left(x^2+3x+4\right)\left(x^2+3x-1\right)\)
Đây là một dạng phân tích thừa số nguyên tố khá quen, cô sẽ hướng dẫn e nhé :) Ta cần ghép các hạng tử để xuất hiện các thành phần chứa biến giống nhau.
\(A=\left(4x+1\right)\left(12x-1\right)\left(3x+2\right)\left(x+1\right)-4=\left(4x+1\right)\left(3x+2\right)\left(12x-1\right)\left(x+1\right)-4\)
\(=\left(12x^2+11x+2\right)\left(12x^2+11x-1\right)-4\)
Đặt \(12x^2+11x+2=t\Rightarrow A=t\left(t-3\right)-4=t^2-3t-4=\left(t-4\right)\left(t+1\right)\)
Quay lại biến x ta có: \(A=\left(12x^2+11x-2\right)\left(12x^2+11x+3\right)\)
Câu sau tương tự nhé :)
\(x.\left(x^2-4\right)-3x+6\)
\(=x.\left(x+2\right).\left(x-2\right)-3.\left(x-2\right)\)
\(=\left(x^2+2x\right).\left(x-2\right)-3.\left(x-2\right)\)
\(=\left(x-2\right).\left(x^2+2x-3\right)\)
\(=\left(x-2\right).\left(x^2-x+3x-3\right)\)
\(=\left(x-2\right).[x.\left(x-1\right)+3.\left(x-1\right)]\)
\(=\left(x-2\right).\left(x-1\right).\left(x+3\right)\)
( x + 2 ) ( x2 - 2x ) - 3x - 6
= ( x + 2 ) ( x2 - 2x ) - ( 3x + 6 )
= ( x + 2 ) ( x2 - 2x ) - 3 ( x + 2 )
= ( x + 2 ) ( x2 - 2x - 3 )
= ( x + 2 ) [ ( x2 + x ) - ( 3x + 3 ) ]
= ( x + 2 ) [ x ( x + 1 ) - 3 ( x + 1 ) ]
= ( x + 2 ) ( x - 3 ) ( x + 1 )
( x + 2 )( x2 - 2x ) - 3x - 6
= ( x + 2 )( x2 - 2x ) - 3( x + 2 )
= ( x + 2 )( x2 - 2x - 3 )
= ( x + 2 )[ ( x2 - 2x + 1 ) - 4 ]
= ( x + 2 )[ ( x - 1 )2 - 22 ]
= ( x + 2 )( x - 1 - 2 )( x - 1 + 2 )
= ( x + 2 )( x - 3 )( x + 1 )
a)3x^2-7x+2
=3x^2-x-6x+2
=(3x^2-x)-(6x-2)
=x(3x-1)-2(3x-1)
=(x-2)(3x-1)
cho loi nx nha may ban
\(\left(x^2+3x+1\right)\left(x^2+3x+2\right)-6\)
Đặt \(\left(x^2+3x+1\right)=a\), ta được:
\(a\left(a+1\right)-6\)\(=a^2+a-6\)\(=\left(a^2+3a\right)-\left(2a+6\right)\)\(=a\left(a+3\right)-2\left(a+3\right)\)
\(=\left(a+3\right)\left(a-2\right)\)
Thay \(a=\left(x^2+3x+1\right)\), ta được:
\(=\left(x^2+3x+1+3\right)\left(x^2+3x+1-2\right)\)
\(=\left(x^2+3x+4\right)\left(x^2+3x-1\right)\)