K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2020

\(\frac{x}{2}=\frac{y}{4};x^4\cdot y^4=16\) . Tìm x,y

Đặt \(\frac{x}{2}=\frac{y}{4}=z\) ta có: x = 2z; y = 4z

Thay vào biểu thức \(x^4\cdot y^4=16\) ta được:

\(\left(2\cdot z\right)^4\cdot\left(4\cdot z\right)^4=16\)

\(2^4\cdot z^4\cdot4^4\cdot z^4=16\)

\(\left(2^4\cdot4^4\right)\cdot\left(z^4\cdot z^4\right)=16\)

\(4096\cdot z^8=16\)

\(z^8=\frac{16}{4096}=\frac{1}{256}=\left(\frac{1}{16}\right)^8\)

\(\Rightarrow z=\frac{1}{16}\)

\(\Rightarrow x=2\cdot z=2\cdot\frac{1}{16}=\frac{1}{8}\)

\(\Rightarrow y=4\cdot z=4\cdot\frac{1}{16}=\frac{1}{4}\)

Vậy \(x=\frac{1}{8};y=\frac{1}{4}\)

11 tháng 8 2018

\(\frac{x}{2}=\frac{y}{4}=k\)

=>   \(x=2k;\)\(y=4k\)

Theo bài ra ta có:

\(x^4.y^4=16\)

<=>  \(\left(2k\right)^4.\left(4k\right)^4=16\)

<=> \(4096.k^8=16\)

<=> \(k^8=\frac{1}{256}\)

<=>  \(k=\pm\frac{1}{2}\)

làm nốt phần còn lại

11 tháng 8 2018

        x/2=y/4

=>   2y=4x

<=>   y=2x

thay vào , ta có

        x4 .(2x)4 =16

<=> 16x8=16

<=>    x8 =1

=> x= 1 hoặc x=-1

thay vào ta có 2 cặp (x,y) là ( 1,2) và (-1,-2)

6 tháng 8 2016

\(\Rightarrow\frac{x^8}{256}=\frac{y^8}{65536}=\frac{x^4.y^4}{4096}=\frac{16}{4096}=\frac{1}{256}\)

\(\Rightarrow\left[\begin{array}{nghiempt}x=1\\x=-1\end{array}\right.\)

\(\Rightarrow\left[\begin{array}{nghiempt}y=2\\y=-2\end{array}\right.\)

Mà 2 và 4 cùng dấu

=> x; y cùng dấu

\(\Rightarrow\left(x;y\right)\in\left\{\left(1;2\right);\left(-1;-2\right)\right\}\)

6 tháng 8 2016

=>\(\frac{x}{2}=\frac{y}{4}=>\frac{x^4}{16}=\frac{y^4}{256}=\frac{x^4.y^4}{16.256}=\frac{16}{4096}=\frac{1}{256}\)

=>\(\begin{cases}x=1\\x=-1\end{cases}\)

=>\(\begin{cases}y=2\\y=-2\end{cases}\)

vậy:

\(x=1;y=2\)

\(x=-1;y=-2\)

16 tháng 9 2016

\(\frac{x}{2}=\frac{y}{4}\)

\(\Rightarrow\frac{x^8}{2^8}=\frac{y^8}{4^8}=\frac{x^4.y^4}{2^4.4^4}=\frac{16}{8^4}=\frac{1}{2^8}\)

\(\Rightarrow\begin{cases}x^4=1\\y^4=2^8\end{cases}\)

\(\Rightarrow\begin{cases}x=\pm1\\y=\pm x\end{cases}\)

Mà 2 và 4 cùng dấu 

\(\Rightarrow\left(x;y\right)\in\left\{\left(1;2\right);\left(-1;-2\right)\right\}\)

16 tháng 9 2016

Ta có:

\(\frac{x}{2}=\frac{y}{4}\) => \(\frac{x^4}{2^4}=\frac{y^4}{4^4}\) => \(\frac{x^4}{16}=\frac{y^4}{256}\)

=> \(\frac{x^8}{16^2}=\frac{y^8}{256^2}=\frac{x^4.y^4}{16.256}=\frac{16}{16.256}=\frac{1}{256}\)

=> \(\begin{cases}x^8=\frac{1}{256}.16^2\\y^8=\frac{1}{256}.256^2\end{cases}\)=> \(\begin{cases}x^8=1=1^8=\left(-1\right)^8\\y^8=256=2^8=\left(-2\right)^8\end{cases}\)=> \(\begin{cases}x\in\left\{1;-1\right\}\\y\in\left\{2;-2\right\}\end{cases}\)

Vậy ta tìm được 2 cặp giá trị (x;y) thỏa mãn đề bài là: (1;2) ; (-1;-2)

12 tháng 10 2017

Trong mấy cái số viết liền ở câu a bạn thêm phân số nha, mình làm nhanh nên quên ghi.

12 tháng 10 2017

a) \(\frac{x}{2}=\frac{y}{3};\frac{y}{3}=\frac{z}{3}\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{3}\)

\(\Rightarrow\frac{x}{2}=\frac{2y}{6}=\frac{3z}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{2}=\frac{2y}{6}=\frac{3z}{9}=\frac{x-2y+3z}{2-6+9}=\frac{19}{5}\)

\(\frac{x}{2}=\frac{19}{5}\Rightarrow x=\frac{38}{5}\)

\(\frac{y}{3}=\frac{19}{5}\Rightarrow y=\frac{57}{5}\)

\(\frac{z}{3}=\frac{19}{5}\Rightarrow z=\frac{57}{5}\)

6 tháng 11 2015

=>\(\frac{x^4}{16}=\frac{y^4}{256}=k\)

=>\(x^4=16k\) ; \(y^4=256k\)

=>

 

24 tháng 7 2018

\(a,5xy\left(-7x^3y^4\right)\)

\(=5\left(-7\right)\left(xx^3\right)\left(yy^4\right)\)

\(=-35x^4y^5\)

Hệ số: -35.

Bậc: 9.

Các câu còn lại lm tương tự nhá.

hok tốt!

8 tháng 7 2019

Hướng dẫn 1 phần : ko biết thì hỏi 

a) áp dụng tính chất của dãy tỉ số bằng  nhau ta có

\(\frac{x}{4}=\frac{y}{5}=\frac{y-x}{5-4}=15\)

\(\Rightarrow\hept{\begin{cases}x=15.4=60\\y=15.5=75\end{cases}}\)

Vạy \(\hept{\begin{cases}x=60\\y=75\end{cases}}\)