Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{2}=\frac{y}{4}=k\)
=> \(x=2k;\)\(y=4k\)
Theo bài ra ta có:
\(x^4.y^4=16\)
<=> \(\left(2k\right)^4.\left(4k\right)^4=16\)
<=> \(4096.k^8=16\)
<=> \(k^8=\frac{1}{256}\)
<=> \(k=\pm\frac{1}{2}\)
làm nốt phần còn lại
x/2=y/4
=> 2y=4x
<=> y=2x
thay vào , ta có
x4 .(2x)4 =16
<=> 16x8=16
<=> x8 =1
=> x= 1 hoặc x=-1
thay vào ta có 2 cặp (x,y) là ( 1,2) và (-1,-2)
Ta có:
\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\Leftrightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\) và \(x^2-y^2=-16\)
Áp dụng tinh chất của dãy tỉ số bằng nhau:
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x^2-y^2}{8^2-12^2}=\frac{-16}{-80}=\frac{1}{5}\)
\(\hept{\begin{cases}\frac{x^2}{8^2}=\frac{1}{5}\Rightarrow x=\sqrt{\frac{1}{5}.8^2}=\frac{8\sqrt{5}}{5};x=-\frac{8\sqrt{5}}{5}\\\frac{y^2}{12^2}=\frac{1}{5}\Rightarrow y=\sqrt{\frac{1}{5}.12^2}=\frac{12\sqrt{5}}{5};y=-\frac{12\sqrt{5}}{5}\\\frac{z}{15}=\sqrt{\frac{1}{5}}\Rightarrow z=\sqrt{\frac{1}{5}}.15=3\sqrt{5}\end{cases}}\)
Vậy .......
Mong bạn thông cảm cho . Dấu " / " là phân số nhé !
x/2 = y/3 ; y/4 = z/5 và x2 - y2 = -16
=> x/2 = y/3 <=> x/8 = y/12 (1)
y/4 = z/5 <=> y/12 = z/15 (2)
Từ (1) và (2) suy ra : x /8 = y/12 = z/15 và x2 - y2 = -16
=> x2/16 = y2/24 = z/15 <=> x2/16 = y2/24
Áp dụng t/c dãy tỉ số bằng nhau , ta có :
x2/16 = y2/24 = x2 - y2 / 16 - 24 = -16/-8 = 2
=> x/8 = 2 => x = 16
y/12 = 2 => y = 24
z/15 = 2 => z = 30
Vậy x = 16
y = 24
z = 30
Chúc bạn học tốt !
\(\frac{x}{2}=\frac{y}{4}\)
\(\Rightarrow\frac{x^8}{2^8}=\frac{y^8}{4^8}=\frac{x^4.y^4}{2^4.4^4}=\frac{16}{8^4}=\frac{1}{2^8}\)
\(\Rightarrow\begin{cases}x^4=1\\y^4=2^8\end{cases}\)
\(\Rightarrow\begin{cases}x=\pm1\\y=\pm x\end{cases}\)
Mà 2 và 4 cùng dấu
\(\Rightarrow\left(x;y\right)\in\left\{\left(1;2\right);\left(-1;-2\right)\right\}\)
Ta có:
\(\frac{x}{2}=\frac{y}{4}\) => \(\frac{x^4}{2^4}=\frac{y^4}{4^4}\) => \(\frac{x^4}{16}=\frac{y^4}{256}\)
=> \(\frac{x^8}{16^2}=\frac{y^8}{256^2}=\frac{x^4.y^4}{16.256}=\frac{16}{16.256}=\frac{1}{256}\)
=> \(\begin{cases}x^8=\frac{1}{256}.16^2\\y^8=\frac{1}{256}.256^2\end{cases}\)=> \(\begin{cases}x^8=1=1^8=\left(-1\right)^8\\y^8=256=2^8=\left(-2\right)^8\end{cases}\)=> \(\begin{cases}x\in\left\{1;-1\right\}\\y\in\left\{2;-2\right\}\end{cases}\)
Vậy ta tìm được 2 cặp giá trị (x;y) thỏa mãn đề bài là: (1;2) ; (-1;-2)
Bài làm
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Nhân chéo ta được x^2=9y^2, thay vào biểu thức còn lại là tìm được x và y.
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)
\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
\(\Rightarrow\frac{x^2}{64}=\frac{y^2}{144}=\frac{z^2}{225}=\frac{x^2+y^2}{208}=1\)
Vậy x = 8 ; y = 12 ; z = 15
\(\Rightarrow\frac{x^8}{256}=\frac{y^8}{65536}=\frac{x^4.y^4}{4096}=\frac{16}{4096}=\frac{1}{256}\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=1\\x=-1\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}y=2\\y=-2\end{array}\right.\)
Mà 2 và 4 cùng dấu
=> x; y cùng dấu
\(\Rightarrow\left(x;y\right)\in\left\{\left(1;2\right);\left(-1;-2\right)\right\}\)
=>\(\frac{x}{2}=\frac{y}{4}=>\frac{x^4}{16}=\frac{y^4}{256}=\frac{x^4.y^4}{16.256}=\frac{16}{4096}=\frac{1}{256}\)
=>\(\begin{cases}x=1\\x=-1\end{cases}\)
=>\(\begin{cases}y=2\\y=-2\end{cases}\)
vậy:
\(x=1;y=2\)
\(x=-1;y=-2\)