Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)Gọi ƯCLN(2n+1;6n+5)=d
Ta có: 2n+1 chia hết cho d; 6n+5 chia hết cho d
=>3(2n+1) chia hết cho d; 6n+5 chia hết cho d
=>6n+3 chia hết cho d; 6n+5 chia hết cho d
mà 3;5 là 2 số nguyên tố cùng nhau
nên 6n+3 và 6n+5 là 2 số nguyên tố cùng nhau
hay 2n+1 và 6n+5 là 2 số nguyên tố cùng nhau
=>đpcm
Sô ước nguyên của A là :
( 3 + 1 )( 5 + 1 )( 2 + 1) . 2 = 4 . 6 . 3 . 2 = 144 ước
Gọi d là ƯC(20n+9;30n+13) (d thuộc N*)
=>20n+9 chia hết cho d =>60n+27 chia hết cho d
=>30n+13 chia hết cho d =>60n+26 chia hết cho d
=>60n+27-60n-26 chia hết cho d
=>1 chia hết cho d
=>d=1 =>(20n+9;30n+13)+1
=>20n+9 và 30n+13 là 2 số nguyên tố cùng nhau
Gọi UWCNL(2n+3,2n+2) là d ( d khác 0 )
=> \(2n+3⋮d;2n+2⋮d\)
=> \(\left(2n+3\right)-\left(2n+2\right)⋮d\)
=> \(1⋮d\)
=> \(d=1\)
Vậy 2n+3 và 2n+2 là 2 số nguyên tố cùng nhau
\(x^2\) + 165 = y2
y2 - \(x^2\) = 165
\(y^2\) - \(xy\) + \(xy\) - \(x\)2 = 165
(\(y^2\) - \(xy\)) + (\(xy\) - \(x\)2) = 165
\(y\left(y-x\right)\) + \(x\)( y - \(x\)) = 165
(\(y-x\))(\(x+y\)) = 165 = 15 \(\times\) 11 = 3 \(\times\) 55 = 5 \(\times\) 33
y + \(x\) = 15
y - \(x\) = 11
trừ vế cho vế ta được
2\(x\) = 4=> \(x\) = 2=> y = 11 + 2 = 13
\(y+x=55\)
y - \(x\) = 3
Trừ vế với vế ta được: 2\(x\) = 55 - 3
2\(x\) = 52
\(x\) = 52 : 2
\(x\) = 26 ⇒ y = 55 - 26 = 29
\(y+x=33\)
y - \(x\) = 5
Trừ vế với vế ta được: 2\(x\) = 28
\(x\) = 28: 2
\(x\) = 14 ⇒ y = 5 + 14 = 19
Vậy ta có các cặp nghiệm thỏa mãn yêu cầu đề bài là:
(\(x\); y) = ( 2; 13); (14; 19); ( 26; 29)
Gọi ước chung lớn nhất của 11a + 2b và 18a + 5b là d ta có:
\(\left\{{}\begin{matrix}11a+2b⋮d\\18a+5b⋮d\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}\left(11a+2b\right).5⋮d\\\left(18a+5b\right).2⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}55a+10b⋮d\\36a+10b⋮d\end{matrix}\right.\)
⇒ 55a + 10b - (36a + 10b) ⋮ d ⇒ 55a + 10b - 36a - 10b ⋮ d ⇒19a⋮d (1)
\(\left\{{}\begin{matrix}11a+2b⋮d\\18a+5b⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}\left(11a+2b\right).18⋮d\\\left(18a+5b\right).11⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}198a+36b⋮d\\198a+55b⋮d\end{matrix}\right.\)
⇒198a + 55b -(198a + 36b) ⋮ d⇒198a + 55b -198a -36b ⋮d⇒ 19b⋮d(2)
Kết hợp(1) và (2) ta có: d là ước chung của 19a và 19b
19a = 19.a; 19b = 19.b và (a;b) = 1⇒ ƯCLN(19a; 19b) = 19
⇒ d = 19 ⇒ ƯC(11a + 2b; 18a + 5b) = {1; 19) (đpcm)
Lời giải:
Gọi $d=ƯCLN(11a+2b, 18a+5b)$
$\Rightarrow 11a+2b\vdots d; 18a+5b\vdots d$
$\Rightarrow 5(11a+2b)-2(18a+5b)\vdots d$
$\Rightarrow 19\vdots d$
$\Rightarrow d=1$ hoặc $d=19$
Vậy ta có đpcm.