Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, \(x^2\) - 9 = 0
(\(x\) - 3)(\(x\) + 3) = 0
\(\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
vậy \(x\) \(\in\) {-3; 3}
5, 4\(x^2\) - 36 = 0
4.(\(x^2\) - 9) = 0
\(x^2\) - 9 = 0
(\(x\) - 3)(\(x\) + 3) = 0
\(\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
Vậy \(x\) \(\in\) {-3; 3}
a) \(x^2-36=0\)
\(\Leftrightarrow x^2=36\)
\(\Leftrightarrow x=\pm\sqrt{36}=\pm6\)
b) \(\left(3x-5\right)^2-\left(x+6\right)^2=0\)
\(\Leftrightarrow\left(3x-5-x-6\right)\left(3x-5+x+6\right)=0\)
\(\Leftrightarrow\left(2x-11\right)\left(4x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{11}{2}\\x=\frac{-1}{4}\end{cases}}\)
a, x\(^2\) - x = x - 1
\(\Leftrightarrow\) x\(^2\) - 2x + 1 = 0
\(\Leftrightarrow\) (x - 1)\(^2\) = 0
\(\Leftrightarrow\) x - 1 = 0
\(\Leftrightarrow\) x = 1
a) \(x^2-x=x-1\)
\(\Leftrightarrow x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Rightarrow x=1\)
b) \(\left(x^2-36\right)-\left(x+6\right)=0\)
\(\Leftrightarrow\left(x+6\right)\left(x-7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+6=0\\x-7=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=-6\\x=7\end{matrix}\right.\)
Vậy..
c) \(\left(2x-1\right)^2-\left(4x^2-1\right)=0\)
\(\Leftrightarrow4x^2-4x+1-4x^2+1=0\)
\(\Leftrightarrow-4x+2=0\)
\(\Rightarrow x=\dfrac{1}{2}\)
d) \(x^2\left(x^2-4\right)-\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(x^2-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2-4=0\\x^2-1=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=\pm2\\x=\pm1\end{matrix}\right.\)
Vậy..
\(4\left(6-x\right)+x^2-12x+36=0\)
\(24-4x+x^2-12x+36=0\)
\(x^2-16x+60=0\)
\(x^2-2x8+8^2-8^2+60=0\)
\(\left(x-8\right)^2-4=0\)
\(\left(x-8\right)^2=4\)
\(\left(x-8\right)^2=\left(\pm2\right)^2\)
\(\orbr{\begin{cases}x-8=2\Rightarrow x=10\\x-8=-2\Rightarrow x=6\end{cases}}\)
Ta có \(\left(x-4\right)^2-36=0\)
\(\Leftrightarrow\left(x-4\right)^2-6^2=0\)
\(\Leftrightarrow\left(x-4-6\right)\left(x-4+6\right)=0\)
\(\Leftrightarrow\left(x-10\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=10\\x=-2\end{matrix}\right.\)
Vậy \(x\in\left\{10;-2\right\}\)
\(\left(x-4\right)^2-6^2=0\)
\(\Leftrightarrow\left(x-4-6\right)\left(x-4+6\right)=0\)
\(\Leftrightarrow\left(x-10\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=10\\x=-2\end{matrix}\right.\)
Vậy ...
a. (x-4)\(^2\)=x+1
⇔ x\(^2\) - 8x + 16 -x - 1 =0
⇔ x\(^2\) - 9x + 15 = 0
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{9+\sqrt{21}}{2}\\x=\frac{9-\sqrt{21}}{2}\end{matrix}\right.\)
b. 5.(x+3)+2x.(3+x)=0
⇔ (5+ 2x ) ( x + 3 ) =0
\(\Leftrightarrow\left[{}\begin{matrix}5+2x=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-5}{2}\\x=-3\end{matrix}\right.\)
c. (x-4)\(^2\)-36=0
⇔ ( x - 4 - 6 ) ( x - 4 + 6 ) = 0
⇔ ( x - 10 ) ( x + 2 ) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x-10=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=10\\x=-2\end{matrix}\right.\)
d. (7x-4)\(^2\)-(2x+1)\(^2\)=0
⇔ ( 7x - 4 - 2x - 1 ) ( 7x - 4 + 2x + 1 ) = 0
⇔ ( 5x - 5 ) ( 9x - 3 ) = 0
\(\Leftrightarrow\left[{}\begin{matrix}5x-5=0\\9x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{1}{3}\end{matrix}\right.\)
a. (x-4)22=x+1
⇔ x22 - 8x + 16 -x - 1 =0
⇔ x22 - 9x + 15 = 0
⇔⎡⎣x=9+√212x=9−√212⇔[x=9+212x=9−212
b. 5.(x+3)+2x.(3+x)=0
⇔ (5+ 2x ) ( x + 3 ) =0
⇔[5+2x=0x+3=0⇔[x=−52x=−3⇔[5+2x=0x+3=0⇔[x=−52x=−3
c. (x-4)22-36=0
⇔ ( x - 4 - 6 ) ( x - 4 + 6 ) = 0
⇔ ( x - 10 ) ( x + 2 ) = 0
⇔[x−10=0x+2=0⇔[x=10x=−2⇔[x−10=0x+2=0⇔[x=10x=−2
d. (7x-4)22-(2x+1)22=0
⇔ ( 7x - 4 - 2x - 1 ) ( 7x - 4 + 2x + 1 ) = 0
⇔ ( 5x - 5 ) ( 9x - 3 ) = 0
⇔[5x−5=09x−3=0⇔[x=1x=13
a) Ta có: \(3x\left(x-2\right)-2\left(2-x\right)=0\)
\(\Leftrightarrow3x\left(x-2\right)+2\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(3x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\3x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\frac{2}{3}\end{matrix}\right.\)
Vậy: \(x\in\left\{2;-\frac{2}{3}\right\}\)
b) Ta có: \(\left(x+2\right)^2-4x^2=0\)
\(\Leftrightarrow\left(x+2-2x\right)\left(x+2+2x\right)=0\)
\(\Leftrightarrow\left(2-x\right)\left(3x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2-x=0\\3x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\3x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\frac{2}{3}\end{matrix}\right.\)
Vậy: \(x\in\left\{2;-\frac{2}{3}\right\}\)
c) Ta có: \(36-\left(x-4\right)^2=0\)
\(\Leftrightarrow\left(6-x+4\right)\left(6+x-4\right)=0\)
\(\Leftrightarrow\left(10-x\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}10-x=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=10\\x=-2\end{matrix}\right.\)
Vậy: \(x\in\left\{10;-2\right\}\)
\(\left(x-4\right)^2-36=0\)
\(\left(x-4\right)^2-6^2=0\)
\(\left(x-4-6\right)\left(x-4+6\right)=0\)
\(\left(x-10\right)\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-10=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=10\\x=-2\end{cases}}\)
vay \(\orbr{\begin{cases}x=10\\x=-2\end{cases}}\)
(x-4)2-36=0
(x-4)2-62=0
(x-4-6)(x-4+6)=0
(x-10)(x+2)=0
=>[x-10=0=>[x=0
(x+2=0=>[x=-2
Vay [x=10
[x=-2
tìm x biết :
a,(2x-3)^2 =(x+ 5)^2
b,x^2(x-1) -4x^2 +8x -4 =0
c, (x-4)^2 -36 =0
giúp mik nha mik đang gấp
a, (2x-3)^2=(x+5)^2
2x-3=x+5
2x-3-x-5=0
x-8=0
x=8
b, x^2(x-1)-4x^2+8x-4=0
x^2(x-1)-(4x^2-8x+4)=0
x^2(x-1)-4(x^2-2x+1)=0
x^2(x-1)-4(x-1)^2=0
(x-1)(x^2-4)(x-1)=0
(x-1)(x-2)(x+2)(x-1)=0
=>x-1=0=>x=1
=>x-2=0=>x=2
=>x+2=0=>x=-2
=>x-1=0=>x=1
Vậy : x=1 ;x=2 và x=-2
c, (x-4)^2-36=0
(x-4)^2-6^2=0
(x-4-6)(x-4+6)=0
(x-10)(x+2)=0
=>x-10=0=>x=10
=>x+2=0=>x=-2
Vậy : x=10 và x=-2
k đúng cho mình nhé bạn !
`x-4` mũ `2=36`
TH1
`x-4=6`
`x=10`
TH2
`x-4=-6`
`x=-2`
Vậy `x=10` hoặc `x=-2`
(x - 4)2 - 36 = 0
(x - 4)2 = 0 + 36
(x - 4)2 = 36
(x - 4)2 = 62 = (-6)2
TH1 : (x - 4)2 = 62
x - 4 = 6
x = 6 + 4
x = 10
TH2 : (x - 4)2 = (-6)2
x - 4 = -6
x = -6 + 4
x = -2
vậy x ϵ {-2;10}