Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{-3}=\frac{y}{7}\Rightarrow\frac{x}{6}=\frac{y}{-14}=\frac{3y}{-42}\)
\(\frac{y}{-2}=\frac{z}{5}\Rightarrow\frac{y}{-14}=\frac{z}{35}\)
\(\Rightarrow\frac{x}{6}=\frac{y}{-14}=\frac{3y}{-42}=\frac{z}{35}\)
\(x+3y-27=-273\Rightarrow x+3y=-246\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{6}=\frac{3y}{-42}=\frac{x+3y}{6+\left(-42\right)}=-\frac{246}{-36}=\frac{41}{6}\)
\(\Rightarrow\frac{x}{6}=\frac{y}{-14}=\frac{z}{35}=\frac{41}{6}\)
\(\frac{x}{6}=\frac{41}{6}\Rightarrow x=41\)
\(\frac{y}{-14}=\frac{41}{6}=-\frac{287}{3}\)
\(\frac{z}{35}=\frac{41}{6}\Rightarrow x=\frac{1435}{6}\)
Áp dụng t/c dãy tỉ số bằng nhau:
\(\frac{x-3}{-4}=\frac{y+4}{7}=\frac{z-5}{3}=\frac{3x-9}{-12}=\frac{2y+8}{14}=\frac{7z-35}{21}\)
\(=\frac{\left(3x-9\right)-\left(2y+8\right)+\left(7z-35\right)}{-12-14+21}=\frac{3x-2y+7z-52}{-5}=\frac{-273-52}{-5}=65\)
=>x=65.(-4)+3=-257;y=65.7-4=451;z=65.3+5=200
Ta có: (x-3)/(-4)=(y+4)/7=(z-5)/3
=3.(x-3)/(-4).3=2.(y+4)/2.7=7.(z-5)/7.3
=(3x-9)/(-12)=(2y+8)/14=(7z-35)/21
Áp dụng tính chất của dãy tỉ số bằng nhau vào dòng trên ta được:
(3x-9)/(-12)=(2y+8)/14=(7z-35)/21
=[(3x-9)-(2y+8)+(7z-35)]/[(-12)-14+21]
=[(3x - 2y + 7z)+(-9-8+7)]/(-5)
=(-273-10)/(-5)
=283/5.
Do đó:(3x-9)/(-12)=283/5=>x=.....(chỗ này bạn tự tính nhé)
(2y+8)/14=283/5=>y=.....(chỗ này bạn tự tính nhé)
(7z-35)/21=283/5=>z=......(bạn tự tính nốt nhé).
Vậy x=....,y=....,z=.....
a) ADTCDTSBN
có: \(\frac{x}{2}=\frac{z}{4}=\frac{x+z}{2+4}=\frac{18}{6}=3.\)
=> x/2 = 3 => x = 6
y/3 = 3 => y = 9
z/4 = 3 => z = 12
KL:...
b,c làm tương tự nha
d) ta có: \(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}=\frac{2x}{10}\)
ADTCDTSBN
có: \(\frac{2x}{10}=\frac{y}{-6}=\frac{z}{7}=\frac{2x+y-z}{10+\left(-6\right)-7}=\frac{49}{-3}\)
=>...
e) ADTCDTSBN
có: \(\frac{x+1}{2}=\frac{y+2}{3}=\frac{z+3}{4}=\frac{x+1+y+2+z+3}{2+3+4}=\frac{\left(x+y+z\right)+\left(1+2+3\right)}{9}\)
\(=\frac{21+6}{9}=\frac{27}{9}=3\)
=>...
g) ta có: \(\frac{x}{4}=\frac{y}{3}=k\Rightarrow\hept{\begin{cases}x=4k\\y=3k\end{cases}}\)
mà xy = 12 => 4k.3k = 12
12.k2 = 12
k2 = 1
=> k = 1 hoặc k = -1
=> x = 4.1 = 4
y = 3.1 = 3
x=4.(-1) = -4
y=3.(-1) = -3
KL:...
h) ta có: \(\frac{x}{5}=\frac{y}{3}\Rightarrow\frac{x^2}{25}=\frac{y^2}{9}\)
ADTCDTSBN
có: \(\frac{x^2}{25}=\frac{y^2}{9}=\frac{x^2-y^2}{25-9}=\frac{16}{16}=1\)
=>...
1,x/7=y/3 va x-24=y
=>x/7=y/3 va x-y=24
adtcdts=n:
x/7=y/3=x-y/7-3=24/4=6
Suy ra :x/7=6=>x=6.742
y/3=6=>y=3.6=18
2,Adtcdts=n:
x/5=y/7=z/2=y-x/7-5=48/2=24
suy ra : x/5=24=>x=120
y/7=24=>y=168
z/2=24=>z=48
Ta có: \(\frac{4x}{-5}=\frac{6y}{7}=\frac{-3z}{8}\)(1) và x + 3y - 2z = -273
(1) => \(\frac{x}{\frac{-5}{4}}=\frac{3y}{\frac{7}{2}}=\frac{-z}{\frac{8}{3}}\)=> \(\frac{x}{\frac{-5}{4}}=\frac{3y}{\frac{7}{2}}=\frac{-2z}{\frac{16}{3}}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{\frac{-5}{4}}=\frac{3y}{\frac{7}{2}}=\frac{-2z}{\frac{16}{3}}=\frac{x+3y-2z}{\frac{-5}{4}+\frac{7}{2}-\frac{16}{3}}=\frac{-273}{\frac{-37}{12}}=\frac{3276}{37}\)
=> \(\frac{x}{\frac{-5}{4}}=\frac{3276}{37}\)=> \(37x=3276\left(\frac{-5}{4}\right)\)=> x = \(\frac{-4095}{37}\)
và \(\frac{3y}{\frac{7}{2}}=\frac{3276}{37}\)=> \(111y=3276.\frac{7}{2}\)=> y = \(\frac{3822}{37}\)
và \(\frac{-2z}{\frac{16}{3}}=\frac{3276}{37}\)=> \(-74z=3276.\frac{16}{3}\)=> z = \(\frac{-8736}{37}\)
=> A = x + y + z + 1 = \(\frac{-4095}{37}\)+ \(\frac{3822}{37}\)+ \(\frac{-8736}{37}\)+ 1 = \(\frac{-8972}{37}\).