Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Không ghi lại đề:
a) 4.(x2+2x+1)+(4x2-4x+1)-8.(x2-9x-10)=11
<=> 8x2 +4x+5-8x2+72x+80=11
<=> 76x+85=11
=> 76x=-74
=> \(x=\dfrac{-37}{38}\)
b) x2+4x+2x+8=0
<=> x.(x+4)+2.(x+4)=0
=>(x+2).(x+4)=0
=> x=-2 hoặc x=-4
Bài 1 :
a) 2x3-3+3x2+8=0
b) x3-1=0
Bài 2 :
a) (x2-5x)2 + 10.(x2-5x)+24=0
b) (x+2)(x+3)(x-5)(x-6)=180
Bài 1:
a) Bạn xem lại đề
b)
\(x^3-1=0\)
\(\Leftrightarrow (x-1)(x^2+x+1)=0\)
Vì \(x^2+x+1=x^2+2.\frac{1}{2}x+(\frac{1}{2})^2+\frac{3}{4}=(x+\frac{1}{2})^2+\frac{3}{4}\geq \frac{3}{4}>0\)
\(\Rightarrow x^2+x+1\neq 0\)
Do đó: \(x-1=0\Rightarrow x=1\) là nghiệm duy nhất
Bài 2:
a) \((x^2-5x)^2+10(x^2-5x)+24=0\)
\(\Leftrightarrow (x^2-5x)^2+2.5(x^2-5x)+5^2-1=0\)
\(\Leftrightarrow (x^2-5x+5)^2-1=0\)
\(\Leftrightarrow (x^2-5x+5-1)(x^2-5x+5+1)=0\)
\(\Leftrightarrow (x^2-5x+4)(x^2-5x+6)=0\)
\(\Leftrightarrow (x-1)(x-4)(x-2)(x-3)=0\)
\(\Rightarrow \left[\begin{matrix} x-1=0\\ x-4=0\\ x-2=0\\ x-3=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=1\\ x=4\\ x=2\\ x=3\end{matrix}\right.\)
b)
\((x+2)(x+3)(x-5)(x-6)=180\)
\(\Leftrightarrow [(x+2)(x-5)][(x+3)(x-6)]=180\)
\(\Leftrightarrow (x^2-3x-10)(x^2-3x-18)=180\)
\(\Leftrightarrow a(a-8)=180\) (đặt \(x^2-3x-10=a\) )
\(\Leftrightarrow a^2-8a+16-196=0\)
\(\Leftrightarrow (a-4)^2-14^2=0\)
\(\Leftrightarrow (a-4-14)(a-4+14)=0\Leftrightarrow (a-18)(a+10)=0\)
\(\Rightarrow a=18\) hoặc $a=-10$
+) Nếu $a=18$ thì \(x^2-3x-10=18\)
\(\Leftrightarrow x^2-3x-28=0\)
\(\Leftrightarrow (x-7)(x+4)=0\Rightarrow \left[\begin{matrix} x=7\\ x=-4\end{matrix}\right.\)
+) Nếu $a=-10$ thì \(x^2-3x-10=-10\Leftrightarrow x^2-3x=0\Leftrightarrow x(x-3)=0\)
\(\Leftrightarrow \left[\begin{matrix} x=0\\ x=3\end{matrix}\right.\)
Vậy pt có 4 nghiệm \(x\in \left\{7;-4;0;3\right\}\)
\(a,\left(x-3\right)^2-4=0\)
\(\Leftrightarrow\left(x-3\right)^2=4\)
\(\Rightarrow x-3=\pm2\)
\(\hept{\begin{cases}x-3=2\Rightarrow x=5\\x-3=-2\Rightarrow x=1\end{cases}}\)
Vậy \(x=5\)hoặc \(x=1\)
\(b,x^2-2x=24\)
\(\Leftrightarrow x^2-2x+1-1=24\)
\(\Leftrightarrow\left(x-1\right)^2=24+1=25\)
\(\Leftrightarrow x-1=\pm5\)
\(\hept{\begin{cases}x-1=5\Rightarrow x=6\\x-1=-5\Rightarrow x=-4\end{cases}}\)
Vậy \(x=6\) hoặc \(x=-4\)
\(c,\left(2x+1\right)^2+\left(x+3\right)^2-5\left(x-7\right)\left(x+7\right)=0\)
\(\Leftrightarrow4x^2+4x+1+x^2+6x+9-5\left(x^2-49\right)=0\)
\(\Leftrightarrow4x^2+4x+1+x^2+6x+9-5x^2+245=0\)
\(\Leftrightarrow10x+255=0\)
\(\Leftrightarrow10x=-255\)
\(\Leftrightarrow x=\frac{-51}{2}\)
\(d,\left(x-3\right)\left(x^2+3x+9\right)+x\left(x+2\right)\left(2-x\right)=1\)
\(\Leftrightarrow x^3-27+x\left(2x-x^2+4-2x\right)=1\)
\(\Leftrightarrow x^3-27-x^3+4x=1\)
\(\Leftrightarrow4x-27=1\)
\(\Leftrightarrow4x=28\)
\(\Leftrightarrow x=7\)
\(\text{a) }P=x^3+6x^2y+12xy^2+8y^3\) tại \(x+2y=-5\) Chữa đề
\(\text{Ta có : }P=x^3+6x^2y+12xy^2+8y^3\\ P=x^3+3\cdot x^2\cdot2y+3\cdot x\cdot\left(2y\right)^2+y^3\\ P=\left(x+2y\right)^3\\ Thay\text{ }2y+x=-5\text{ vào biểu thức}\\ \text{Ta được: }P=\left(-5\right)^3\\ P=-125\\ \text{Vậy }P=-125\text{ }khi\text{ }2y+x=-5\)
\(\text{b) }Q=x^3-y^3\text{tại }x-y=20;xy=24\\ \text{Theo bài ra ta có: }x-y=10\\ \Rightarrow\left(x-y\right)^2=10^2\\ \Rightarrow x^2-2xy+y^2=100\\ \Rightarrow x^2+y^2=100+2xy\\ Thay\text{ }xy=24\text{ vào biểu thức ta được : }\\ x^2+y^2=100+2xy\\ \Rightarrow x^2+y^2=100+48\\ \Rightarrow x^2+y^2=148\\ \text{Ta lại có : }Q=x^3-y^3\\ Q=\left(x-y\right)\left(x^2+xy+y^2\right)\\ Thay\text{ }x-y=10;xy=24;x^2+y^2=148\text{ vào biểu thức }\\ \text{Ta được : }Q=10\left(148+24\right)\\ Q=1720\\ \text{Vậy }Q=1720\text{ }khi\text{ }x-y=20;xy=24\)
\(\)
câu này xài cách đặt ẩn giống câu trên luôn
b) Đặt n = x2-3x+3 ta được
n(n+x)=2x2
n2 +nx-2x2=0
n^2-1nx+2nx-2x^2=0
n(n-x)+2x(n-x)=0
(n+2x)(n-x)=0
(x^2-3x+3+2x)(x^2-3x+3-x)=0
(x^2-x+3)(x^2-4x+3)=0
mà x^2-x+3 =0
x^2-1/2.2x+1/4-1/4+3=0
(x+1/2)^2+11/4 >0( loại)
Vậy ta còn
x^2-4x+3=0
x^2-1x-3x+3=0
(x-1)(x-3)=0
<=> x-1=0 hay x-3=0
x=1 hay x=3
Vậy S= (1;3)
a) (x -1)(x-6)(x-5)(x-2)=252
<=>( x^2-7x+6)(x^2-7x+10)=252
Đặt n=x^2-7x+6 ta được :
n(n+4)=252
n^2+4n-252=0
n^2-14n+18n-252=0
n(n-14)+18(n-14)=0
(n+18)(n-14)=0
r tới đây bạn tự giải tiếp nha, mình đánh máy ko quen nên hơi lâu, với bạn tự thêm dấu tương đương nữa, chờ mình câu2
Bài 1 :
\(A=\left(x-1\right)\left(x-2\right)\left(x+7\right)\left(x+8\right)+8\)
\(A=\left[\left(x-1\right)\left(x+7\right)\right]\left[\left(x-2\right)\left(x+8\right)\right]+8\)
\(A=\left(x^2+6x-7\right)\left(x^2+6x-16\right)+8\)
Đặt \(a=x^2+6x-7\)
\(A=a\left(a-9\right)+8\)
\(A=a^2-9a+8\)
\(A=a^2-8a-a+8\)
\(A=a\left(a-8\right)-\left(a-8\right)\)
\(A=\left(a-8\right)\left(a-1\right)\)
Thay a vào là xong bạn :)
1a)\(\left(x-3\right)^2-4=0\\ \Rightarrow\left(x-3\right)^2=4\\ \Rightarrow\left[{}\begin{matrix}x-3=2\\x-3=-2\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=5\\x=1\end{matrix}\right.\)
b) \(x^2-2x=24\)
\(\Rightarrow x-2x-24=0\)
\(\Rightarrow x^2-6x+4x-24=0\\ \Rightarrow x\left(x-6\right)+4\left(x-6\right)=0\\ \Rightarrow\left(x-6\right)\left(x+4\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-6=0\\x+4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\)
c) \(\left(2x+1\right)^2+\left(x+3\right)^2-5\left(x-7\right)\left(x+7\right)=0\)
\(\Rightarrow4x^2+4x+1+x^2+6x+9-5x^2+245=0\\ \Rightarrow10x+255=0\\ \Rightarrow x=-25.5\)
d) \(\left(x-3\right)\left(x^2+3x+9\right)+x\left(x+2\right)\left(2-x\right)=1\)
\(\Rightarrow x^3-3^3+x\left(2^2-x^2\right)=1\\ \Rightarrow x^3-27+4x-x^3=1\\ \Rightarrow4x=1+27\\ \Rightarrow x=7\)
e) \(\left(3x-1\right)^2+2\left(x+3\right)^2+11\left(x+1\right)\left(1-x\right)=6\)
\(\Rightarrow9x^2-6x+1+2\left(x^2+6x+9\right)+11\left(1-x^2\right)=6\\ \Rightarrow9x^2-6x+1+2x^2+12x+18+11-11x^2=6\\ \Rightarrow6x+30=6\\ \Rightarrow6x=-24\\ \Rightarrow x=-4\)
nhiều quá bạn ạ
hay bạn tìm hiểu cách thức chung làm dạng bài tìm GTNN chứ như thế này thì làm lâu lắm
mik chỉ tìm hiểu đc đến câu I còn lại mik k hiểu lắm, bn có lm đc k, giúp mik vs
\(=\left(x^2+30-11x\right)\left(x^2+30-13x\right)-24x^2\)
\(=\left(x^2+30\right)^2-24x\left(x^2+30\right)+143x^2-24x^2\)
\(=\left(x^2+30\right)^2-24x\left(x^2+30\right)+119x^2\)
\(=\left(x^2-17x+30\right)\left(x^2-7x+30\right)\)
\(=\left(x-2\right)\left(x-15\right)\left(x^2-7x+30\right)\)