Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) tính thường
b) \(\left(x-1\right)\left(x+2\right)< 0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1>0\\x+2< 0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>1\\x< -2\end{cases}}\Leftrightarrow1< x< -2\left(ktm\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x-1< 0\\x+2>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< 1\\x>-2\end{cases}}\Leftrightarrow-2< x< 1\left(tm\right)\)
vậy
c)\(\left(x+\frac{3}{5}\right)\left(x+1\right)< 0\Leftrightarrow\orbr{\begin{cases}x+\frac{3}{5}< 0\\x+1>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< -\frac{3}{5}\\x>-1\end{cases}}\Leftrightarrow-1< x< -\frac{3}{5}\left(tm\right)\)
d) \(\left(x-\frac{1}{3}\right)\left(x+\frac{2}{5}\right)>0\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{1}{3}>0\\x+\frac{2}{5}>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>\frac{1}{3}\\x>-\frac{2}{5}\end{cases}}\Leftrightarrow x>\frac{1}{3}\left(tm\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{1}{3}< 0\\x+\frac{2}{5}< 0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< \frac{1}{3}\\x< -\frac{2}{5}\end{cases}}\Leftrightarrow x< \frac{-2}{5}\left(tm\right)\)
vậy ...
a) 5/2 - x + 4/5 = 2/3 + 4/7
<=> 33/10 - x = 26/21
<=> x = 433/210
b) ( x - 1 )( x + 2 ) < 0 ( cái " x " kia là nhân à :v )
Xét 2 trường hợp
1.\(\hept{\begin{cases}x-1>0\\x+2< 0\end{cases}}\Rightarrow\hept{\begin{cases}x>1\\x< -2\end{cases}}\)( loại )
2. \(\hept{\begin{cases}x-1< 0\\x+2>0\end{cases}}\Rightarrow\hept{\begin{cases}x< 1\\x>-2\end{cases}}\Rightarrow-2< x< 1\)
Vậy -2 < x < 1
c) ( x + 3/5 )( x + 1 ) < 0
Xét hai trường hợp :
1. \(\hept{\begin{cases}x+\frac{3}{5}< 0\\x+1>0\end{cases}}\Rightarrow\hept{\begin{cases}x< -\frac{3}{5}\\x>-1\end{cases}}\Rightarrow-1< x< -\frac{3}{5}\)
2. \(\hept{\begin{cases}x+\frac{3}{5}>0\\x+1< 0\end{cases}}\Rightarrow\hept{\begin{cases}x>-\frac{3}{5}\\x< -1\end{cases}}\)( loại )
Vậy -1 < x < -3/5
d) ( x - 1/3 )( x + 2/5 ) > 0
Xét hai trường hợp :
1.\(\hept{\begin{cases}x-\frac{1}{3}>0\\x+\frac{2}{5}>0\end{cases}}\Rightarrow\hept{\begin{cases}x>\frac{1}{3}\\x>-\frac{2}{5}\end{cases}}\Rightarrow x>\frac{1}{3}\)
2.\(\hept{\begin{cases}x-\frac{1}{3}< 0\\x+\frac{2}{5}< 0\end{cases}}\Rightarrow\hept{\begin{cases}x< \frac{1}{3}\\x< -\frac{2}{5}\end{cases}\Rightarrow}x< -\frac{2}{5}\)
Vây \(\orbr{\begin{cases}x>\frac{1}{3}\\x< -\frac{2}{5}\end{cases}}\)
e) \(\frac{5}{x}< 1.\)
Để \(\frac{5}{x}< 1\Leftrightarrow\frac{5}{x}\le0.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{5}{x}=0\\\frac{5}{x}< 0\end{matrix}\right.\)
Mà \(5>0.\)
\(\Rightarrow\frac{5}{x}\ne0.\)
\(\Rightarrow\frac{5}{x}< 0.\)
\(\Rightarrow\) Tử mẫu phải trái dấu
\(\Rightarrow x< 0.\)
Vậy \(x< 0\) thì \(\frac{5}{x}< 1.\)
Chúc bạn học tốt!
a)\(1-2x< 7\Leftrightarrow-2x< 6\Leftrightarrow x>-3\)
b)\(\left(x-1\right)\left(x-2\right)>0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1>0\\x-2>0\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x-1< 0\\x-2< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>1\\x>2\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x< 1\\x< 2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x>2\\x< 1\end{matrix}\right.\)
c)\(\left(x-2\right)^2.\left(x+1\right).\left(x-4\right)< 0\)
\(\Leftrightarrow\left(x+1\right)\left(x-4\right)< 0\) (vì \(\left(x-2\right)^2\ge0\))
\(\Leftrightarrow\left\{{}\begin{matrix}x+1< 0\\x-4>0\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x+1>0\\x-4< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x< -1\\x>4\end{matrix}\right.\)(loại) hoặc \(\left\{{}\begin{matrix}x>-1\\x< 4\end{matrix}\right.\)(chọn)
\(\Leftrightarrow-1< x< 4\)
d)\(\frac{x^2.\left(x-3\right)}{x-9}< 0\)(ĐK:\(x\ne9\))
\(\Leftrightarrow\frac{x-3}{x-9}< 0\)(vì \(x^2\ge0\))
\(\Leftrightarrow\left\{{}\begin{matrix}x-3< 0\\x-9>0\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x-3>0\\x-9< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x< 3\\x>9\end{matrix}\right.\)(loại) hoặc \(\left\{{}\begin{matrix}x>3\\x< 9\end{matrix}\right.\)
\(\Leftrightarrow3< x< 9\)
e)\(\frac{5}{x}< 1\)(ĐK:\(x\ne0\))
\(\Leftrightarrow\frac{5}{x}-1< 0\)
\(\Leftrightarrow\frac{5-x}{x}< 0\)
\(\Leftrightarrow\left\{{}\begin{matrix}5-x< 0\\x>0\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}5-x>0\\x< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>5\\x>0\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x< 5\\x< 0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x>5\\x< 0\end{matrix}\right.\)
Giải là phải giải cho hết chứ :)
a, ta có tổng <0 nên 1 trong 2 số phải có 1 số âm , số còn lại là duong . Mà x-1<x+3 nên x-1 âm và x+3 dưong . Vậy x-1<0 nên x<1;x+3>0nen x>-3.vAY X<1 HOAC X>-3
bạn muốn mình làm cách bth hay lập bảng xét dấu các nhị thức
a; (\(x\) - 2)2.(\(x+1\)).(\(x\) - 4) < 0
(\(x-2\))2 ≥ 0 ∀\(x\); \(x+1\) = 0 ⇒ \(x=-1\); \(x-4\) = 0 ⇒ \(x=4\)
Lập bảng ta có:
\(x\) | - 1 4 |
\(x+1\) | - 0 + | + |
\(x-4\) | - | - 0 + |
(\(x-2\))2 | + | + | + |
(\(x-2\))2.(\(x+1\)).(\(x+4\)) | + 0 - 0 + |
Theo bảng trên ta có: -1 < \(x\) < 4
Vậy \(-1< x< 4\)
b; [\(x^2\).(\(x-3\)):(\(x-9\))] < 0
\(x-3=0\)⇒ \(x=3\); \(x-9\) = 0 ⇒ \(x=9\)
Lập bảng ta có:
\(x\) | 3 9 |
\(x-3\) | - 0 + | + |
\(x-9\) | - | - 0 + |
\(x^2\) | + | + | + |
\(x^2\)(\(x-3\)):(\(x-9\)) | + 0 - 0 + |
Theo bảng trên ta có: 3 < \(x\) < 9
Vậy 3 < \(x\) < 9
a; (\(x\) - 2)2.(\(x+1\)).(\(x\) - 4) < 0
(\(x-2\))2 ≥ 0 ∀\(x\); \(x+1\) = 0 ⇒ \(x=-1\); \(x-4\) = 0 ⇒ \(x=4\)
Lập bảng ta có:
\(x\) | - 1 4 |
\(x+1\) | - 0 + | + |
\(x-4\) | - | - 0 + |
(\(x-2\))2 | + | + | + |
(\(x-2\))2.(\(x+1\)).(\(x+4\)) | + 0 - 0 + |
Theo bảng trên ta có: -1 < \(x\) < 4
Vậy \(-1< x< 4\)
b; [\(x^2\).(\(x-3\)):(\(x-9\))] < 0
\(x-3=0\)⇒ \(x=3\); \(x-9\) = 0 ⇒ \(x=9\)
Lập bảng ta có:
\(x\) | 3 9 |
\(x-3\) | - 0 + | + |
\(x-9\) | - | - 0 + |
\(x^2\) | + | + | + |
\(x^2\)(\(x-3\)):(\(x-9\)) | + 0 - 0 + |
Theo bảng trên ta có: 3 < \(x\) < 9
Vậy 3 < \(x\) < 9
a: (x-1)(x-2)>0
=>x-2>0 hoặc x-1<0
=>x>2 hoặc x<1
b: \(\left(x-2\right)^2\cdot\left(x+1\right)\left(x-4\right)< 0\)
=>(x+1)(x-4)<0
=>-1<x<4
c: \(\dfrac{x^2\left(x-3\right)}{x-9}< 0\)
=>x-3/x-9<0
=>3<x<9
c; \(\dfrac{5}{x}\) < 1 (đk \(x\ne\) 0)
⇒ \(\dfrac{5}{x}\) - 1 < 0 ⇒ \(\dfrac{5-x}{x}\) < 0; 5 - \(x=0\) ⇒ \(x=5\)
Lập bảng ta có:
\(x\) | 0 5 |
\(x-5\) | + | + 0 - |
\(x\) | - 0 + | + |
\(\dfrac{x-5}{x}\) | - || + 0 - |
Theo bảng trên ta có \(x\) \(\in\) ( - ∞; 0) \(\cup\) (5; +∞)
Vậy tập hợp nghiệm của bất phương trình đã cho là:
S = (- ∞; 0) \(\cup\) (5 ; + ∞)
\(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)< 0\)
\(\left(x-1\right)\left(x-4\right)\left(x-2\right)\left(x-3\right)< 0\)
\(\left(x^2-5x+4\right)\left(x^2-5x+6\right)< 0\)
Đặt \(x^2-5x+4=t\)
\(t\left(t+2\right)< 0\)
TH1 : \(\orbr{\begin{cases}t>0\\t+2< 0\end{cases}}\Rightarrow\orbr{\begin{cases}t>0\\t< -2\end{cases}}\)( vô lí )
TH2 : \(\orbr{\begin{cases}t< 0\\t+2>0\end{cases}}\Rightarrow-2< t< 0\Rightarrow-2< x^2-5x+4< 0\)
Xét \(x^2-5x+4>-2\)
\(x^2-5x+6>0\)
\(\left(x-2\right)\left(x-3\right)>0\)
( 1 ) \(\hept{\begin{cases}x-2>0\\x-3>0\end{cases}}\Rightarrow\hept{\begin{cases}x>2\\x>3\end{cases}}\Rightarrow x>3\)
( 2 ) \(\hept{\begin{cases}x-2< 0\\x-3< 0\end{cases}}\Rightarrow\hept{\begin{cases}x< 2\\x< 3\end{cases}}\Rightarrow x< 2\)
Từ hệ ( 1 ) và ( 2 ) = > x > 3 hoặc x < 2 ( * )
\(x^2-5x+4< 0\)
\(\left(x-1\right)\left(x-4\right)< 0\)
( 1 ) \(\hept{\begin{cases}x-1>0\\x-4< 0\end{cases}}\Rightarrow\hept{\begin{cases}x>1\\x< 4\end{cases}}\Rightarrow1< x< 4\)
( 2 ) \(\hept{\begin{cases}x-1< 0\\x-4>0\end{cases}}\Rightarrow\hept{\begin{cases}x< 1\\x>4\end{cases}}\)không có giá trị nào của x thỏa mãn hệ 2
= > 1 < x < 4 ( ** )
Từ ( * ) và ( ** ) = > \(1< x< 2\)và \(3< x< 4\)