K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
ST
3 tháng 12 2017
\(A=5^{n+2}+26.5^n+8^{2n+1}\)
\(A=5^n\left(5^2+26\right)+\left(8^2\right)^n.8\)
\(A=5^n.51+64^n.8\)
\(A=5^n.59-5^n.8+64^n.8\)
\(A=5^n.59+8.\left(-5^n+64^n\right)\)
Ta có: \(\left(5^n.59\right)⋮59\left(1\right)\)
mà \(\left(-5^n+64^n\right)\) luôn chia hết cho \(\left(-5+64\right)=59\Leftrightarrow8.\left(-5^n+64^n\right)⋮59\left(2\right)\)
Từ (1)(2)⇒ A\(⋮\)59
MH
1
AH
Akai Haruma
Giáo viên
9 tháng 7 2024
Cho $n=1$ thì $A$ không chia hết cho $59$. Bạn xem lại đề nhé.
B
0
a,bn gõ đề sai nhé: phải là 11n+2 ms làm đc
Ta có: \(11^{n+2}+12^{2n+1}=11^n.11^2+12^{2n}.12=11^n.121+144^n.12\)
\(=11^n.\left(133-12\right)+144^n.12=11^n.133-11^n.12+144^n.12\)
\(=11^n.133+144^n.12-11^n.12=11^n.133+12.\left(144^n-11^n\right)\)
Vì \(144^n-11^n=\left(144-11\right).\left(144^{n-1}+144^{n-2}11+144^{n-3}11^2+....+144^211^{n-3}+14411^{n-2}+11^{n-1}\right)\) nên 144n-11n luôn chia hết cho 133
Mà 11n.133 cũng chia hết cho 133
=>\(11^{n+2}+12^{2n+1}\) chia hết cho 133 (đpcm)
b,\(5^{n+2}+26.5^n+8^{2n+1}\)
\(=5^n.5^2+26.5^n+8^{2n}.8=5^n.25+26.5^n+64^n.8\)
\(=5^n.25+26.5^n+64^n.8\)
\(=5^n.25+34.5^n-8.5^n+64^n.8=5^n.25+34.5^n+64^n.8-8.5^n\)
\(=59.5^n+8.\left(64^n-5^n\right)\)
Vì \(64^n-5^n=\left(64-5\right).\left(64^{n-1}+64^{n-2}5+....+64.5^{n-2}+5^{n-1}\right)\) nên chia hết cho 59
Mà 59.5n cũng chia hết cho 59
=>\(5^{n+2}+26.5^n+8^{2n+1}\) chia hết cho 59 (đpcm)
a,sai nha bn