K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2017

\(A=5^{n+2}+26.5^n+8^{2n+1}\)

\(A=5^n\left(5^2+26\right)+\left(8^2\right)^n.8\)

\(A=5^n.51+64^n.8\)

\(A=5^n.59-5^n.8+64^n.8\)

\(A=5^n.59+8.\left(-5^n+64^n\right)\)

Ta có: \(\left(5^n.59\right)⋮59\left(1\right)\)

\(\left(-5^n+64^n\right)\) luôn chia hết cho \(\left(-5+64\right)=59\Leftrightarrow8.\left(-5^n+64^n\right)⋮59\left(2\right)\)

Từ (1)(2)⇒ A\(⋮\)59

6 tháng 8 2016

a,bn gõ đề sai nhé: phải là 11n+2 ms làm đc

Ta có: \(11^{n+2}+12^{2n+1}=11^n.11^2+12^{2n}.12=11^n.121+144^n.12\)

\(=11^n.\left(133-12\right)+144^n.12=11^n.133-11^n.12+144^n.12\)

\(=11^n.133+144^n.12-11^n.12=11^n.133+12.\left(144^n-11^n\right)\)

\(144^n-11^n=\left(144-11\right).\left(144^{n-1}+144^{n-2}11+144^{n-3}11^2+....+144^211^{n-3}+14411^{n-2}+11^{n-1}\right)\) nên 144n-11n luôn chia hết cho 133

Mà 11n.133 cũng chia hết cho 133

=>\(11^{n+2}+12^{2n+1}\) chia hết cho 133 (đpcm)

b,\(5^{n+2}+26.5^n+8^{2n+1}\)

\(=5^n.5^2+26.5^n+8^{2n}.8=5^n.25+26.5^n+64^n.8\)

\(=5^n.25+26.5^n+64^n.8\)

\(=5^n.25+34.5^n-8.5^n+64^n.8=5^n.25+34.5^n+64^n.8-8.5^n\)

\(=59.5^n+8.\left(64^n-5^n\right)\)

\(64^n-5^n=\left(64-5\right).\left(64^{n-1}+64^{n-2}5+....+64.5^{n-2}+5^{n-1}\right)\) nên chia hết cho 59

Mà 59.5n cũng chia hết cho 59

=>\(5^{n+2}+26.5^n+8^{2n+1}\) chia hết cho 59 (đpcm)

8 tháng 10 2019

a,sai nha bn

AH
Akai Haruma
Giáo viên
9 tháng 7 2024

Cho $n=1$ thì $A$ không chia hết cho $59$. Bạn xem lại đề nhé.

23 tháng 9 2017

\(a,n^2\left(n+1\right)+2n\left(n+1\right)\\ =\left(n+1\right)\left(n^2+2n\right)\\ =n\left(n+1\right)\left(n+2\right)⋮6\\ \Rightarrow n^2\left(n+1\right)+2n\left(n+1\right)⋮6\left(đpcm\right)\)

25 tháng 9 2017

Sao có câu a) không vậy bạn?