Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(a^2+b^2=4\Leftrightarrow2ab=\left(a+b\right)^2-4\)
\(\Rightarrow2M=\frac{\left(a+b\right)^2-4}{a+b+2}=a+b-2\)
Ta có: \(a+b\le\sqrt{2\left(a^2+b^2\right)}=2\sqrt{2}\Rightarrow M\le\sqrt{2}-1\)
Dấu "="\(\Leftrightarrow a=b=\sqrt{2}\)
Vậy \(M_{max}=\sqrt{2}-1\Leftrightarrow a=b=\sqrt{2}\)
Em mới tìm được Min thôi ạ, Max =\(2\sqrt{2}+4\)nhưng chưa biết cách giải , mọi người giúp với ạ
áp dụng bất đẳng thức AM-GM cho 3 số ta có:
\(a^3+b^3+1\ge3\sqrt[3]{a^3b^3.1}=3ab\)
\(\Rightarrow M=\frac{a^3+b^3+4}{ab+1}=\frac{\left(a^3+b^3+1\right)+3}{ab+1}\ge\frac{3ab+3}{ab+1}=3\)
Vậy giá trị nhỏ nhất của M=3 khi \(\hept{\begin{cases}a^2+b^2=2\\a^3=b^3=1\end{cases}\Rightarrow}a=b=1\)
\(0\le a\le\sqrt{2}\Rightarrow a\left(a-\sqrt{2}\right)\le0\Rightarrow a^2\le a\sqrt{2}\Rightarrow a^3\le a^2\sqrt{2}\)
Tương tự và cộng lại: \(a^3+b^3\le\sqrt{2}\left(a^2+b^2\right)=2\sqrt{2}\)
\(\Rightarrow M\le\frac{2\sqrt{2}+4}{ab+1}\le\frac{2\sqrt{2}+4}{1}=2\sqrt{2}+4\) (do \(ab\ge0\Rightarrow ab+1\ge1\))
Dấu "=" khi \(\left(a;b\right)=\left(0;\sqrt{2}\right);\left(\sqrt{2};0\right)\)
Ta có: \(a^2+b^2=4\left(gt\right)\Rightarrow2ab=\left(a+b\right)^2-4\)
\(\Rightarrow2M=\frac{\left(a+b\right)^2-4}{a+b+2}=a+b-2\)
Mà \(a+b\le\sqrt{2\left(a^2+b^2\right)}=2\sqrt{2}\)
\(\Rightarrow M\le\sqrt{2}-1\)
Dấu \("="\Leftrightarrow a=b=\sqrt{2}\)
Vậy GTLN của \(M=\frac{ab}{a+b+2}=\sqrt{2}-1\)khi \(a=b=\sqrt{2}\)
Ta có a2+b2=4
<=> (a+b)2=4+2ab
<=> (a+b)2-4=2ab
<=> (a+b-2)(a+b+2)=2ab
<=> \(\frac{\left(a+b-2\right)\left(a+b+2\right)}{2}=ab\)
Ta có \(M=\frac{ab}{a+b+2}=\frac{\left(a+b+2\right)\left(a+b-2\right)}{2\left(a+b+2\right)}=\frac{a+b-2}{2}=\frac{a}{2}+\frac{b}{2}-1\)
Áp dụng BĐT Bunyakovsky cho 2 số a/2 và b/2 ta có
\(\left(\frac{a}{2}+\frac{b}{2}\right)^2\le\left(\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^2\right)\left(a^2+b^2\right)\)
\(\Leftrightarrow\left(\frac{a}{2}+\frac{b}{2}\right)^2\le\frac{1}{2}.4\left(doa^2+b^2=4\right)\)
\(\Leftrightarrow\left(\frac{a}{2}+\frac{b}{2}\right)^2\le2\)
\(\Rightarrow\frac{a}{2}+\frac{b}{2}\le\sqrt{2}\)
Do đó \(M=\frac{a}{2}+\frac{b}{2}-1\le\sqrt{2}-1\)
Vậy Max M = \(\sqrt{2}-1\)
Dễ chứng minh được \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)\(\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\left(true\right)\)
\(\Rightarrow2\left(a+b+c\right)\ge\frac{\left(a+b+c\right)^2}{3}\)
\(\Leftrightarrow a+b+c\le6\)
Ta có : \(T=\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\)
\(=1-\frac{1}{a+1}+1-\frac{1}{b+1}+1-\frac{1}{c+1}\)
\(=3-\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)\)
\(\le3-\frac{9}{a+b+c+3}\le3-\frac{9}{6+3}=2\)
Dấu "=" xảy ra khi \(a=b=c=2\)
Bài 4: Áp dụng bất đẳng thức AM - GM, ta có: \(P=\text{}\Sigma_{cyc}a\sqrt{b^3+1}=\Sigma_{cyc}a\sqrt{\left(b+1\right)\left(b^2-b+1\right)}\le\Sigma_{cyc}a.\frac{\left(b+1\right)+\left(b^2-b+1\right)}{2}=\Sigma_{cyc}\frac{ab^2+2a}{2}=\frac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\)Giả sử b là số nằm giữa a và c thì \(\left(b-a\right)\left(b-c\right)\le0\Rightarrow b^2+ac\le ab+bc\)\(\Leftrightarrow ab^2+bc^2+ca^2\le a^2b+abc+bc^2\le a^2b+2abc+bc^2=b\left(a+c\right)^2=b\left(3-b\right)^2\)
Ta sẽ chứng minh: \(b\left(3-b\right)^2\le4\)(*)
Thật vậy: (*)\(\Leftrightarrow\left(b-4\right)\left(b-1\right)^2\le0\)(đúng với mọi \(b\in[0;3]\))
Từ đó suy ra \(\frac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\le\frac{1}{2}.4+3=5\)
Đẳng thức xảy ra khi a = 2; b = 1; c = 0 và các hoán vị
Bài 1: Đặt \(a=xc,b=yc\left(x,y>0\right)\)thì điều kiện giả thiết trở thành \(\left(x+1\right)\left(y+1\right)=4\)
Khi đó \(P=\frac{x}{y+3}+\frac{y}{x+3}+\frac{xy}{x+y}=\frac{x^2+y^2+3\left(x+y\right)}{xy+3\left(x+y\right)+9}+\frac{xy}{x+y}\)\(=\frac{\left(x+y\right)^2+3\left(x+y\right)-2xy}{xy+3\left(x+y\right)+9}+\frac{xy}{x+y}\)
Có: \(\left(x+1\right)\left(y+1\right)=4\Rightarrow xy=3-\left(x+y\right)\)
Đặt \(t=x+y\left(0< t< 3\right)\Rightarrow xy=3-t\le\frac{\left(x+y\right)^2}{4}=\frac{t^2}{4}\Rightarrow t\ge2\)(do t > 0)
Lúc đó \(P=\frac{t^2+3t-2\left(3-t\right)}{3-t+3t+9}+\frac{3-t}{t}=\frac{t}{2}+\frac{3}{t}-\frac{3}{2}\ge2\sqrt{\frac{t}{2}.\frac{3}{t}}-\frac{3}{2}=\sqrt{6}-\frac{3}{2}\)với \(2\le t< 3\)
Vậy \(MinP=\sqrt{6}-\frac{3}{2}\)đạt được khi \(t=\sqrt{6}\)hay (x; y) là nghiệm của hệ \(\hept{\begin{cases}x+y=\sqrt{6}\\xy=3-\sqrt{6}\end{cases}}\)
Ta lại có \(P=\frac{t^2-3t+6}{2t}=\frac{\left(t-2\right)\left(t-3\right)}{2t}+1\le1\)(do \(2\le t< 3\))
Vậy \(MaxP=1\)đạt được khi t = 2 hay x = y = 1
\(2a^2+\frac{1}{a^2}+\frac{b^2}{4}=4\Leftrightarrow\left(a^2+\frac{1}{a^2}-2\right)+\left(a^2+\frac{b^2}{4}-ab\right)=4-ab-2\)
\(\Leftrightarrow\left(a-\frac{1}{a}\right)^2+\left(a-\frac{b}{2}\right)^2=2-ab\)
\(VF=2-ab=\left(a-\frac{1}{a}\right)^2+\left(b-\frac{b}{2}\right)^2\ge0\)
Hay \(ab\le2\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}a=\frac{1}{a}\\b=\frac{b}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left(a;b\right)=\left(1;\frac{1}{2}\right)\\\left(a;b\right)=\left(-1;-\frac{1}{2}\right)\end{cases}}\)
\(a+\frac{1}{b}\le1=>ab+1\le b\)
\(b\le ab+1\ge2\sqrt{ab}=>\sqrt{b}\ge2\sqrt{a}=>\frac{b}{a}\ge4\)
\(T=\frac{ab}{a^2+b^2}=\frac{1}{\frac{a}{b}+\frac{b}{a}}=\frac{1}{\frac{a}{b}+\frac{b}{16a}+\frac{15b}{16a}}\)
áp dụng cô si
\(\frac{a}{b}+\frac{b}{16a}\ge2\sqrt{\frac{ab}{16ab}}=\frac{1}{2}=>T\le\frac{1}{\frac{1}{2}+\frac{15}{16}.4}=\frac{4}{17}\)
\(=>MaxT=\frac{4}{17}\)
dấu = xảy ra khi
\(b=4a;\frac{a}{b}=\frac{b}{16a};ab=1\)
\(=>\hept{\begin{cases}4a^2=1\\b=4a\end{cases}=>\hept{\begin{cases}a=\frac{1}{2}\\b=2\end{cases}}}\)
Ta có: \(a^2+b^2=4\Leftrightarrow a^2+2ab+b^2=4+2ab\)
\(\Leftrightarrow\left(a+b\right)^2=4+2ab\Leftrightarrow\left(a+b\right)^2-4=2ab\)
\(\Leftrightarrow\left(a+b+2\right)\left(a+b-2\right)=2ab\Leftrightarrow\frac{\left(a+b+2\right)\left(a+b-2\right)}{2}=ab\)
\(M=\frac{ab}{a+b+2}=\frac{\left(a+b+2\right)\left(a+b-2\right)}{2\left(a+b+2\right)}=\frac{a+b-2}{2}\)
\(\Leftrightarrow M=\frac{a}{2}+\frac{b}{2}-1\). Áp dụng bất đẳng thức Bunhiaxoopki cho 2 số a/2 và b/2 ta có:
\(\left(\frac{a}{2}+\frac{b}{2}\right)^2\le\left[\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^2\right]\left(a^2+b^2\right)\)
\(\Leftrightarrow\left(\frac{a}{2}+\frac{b}{2}\right)^2\le\frac{1}{2}.4=2\)( do \(a^2+b^2=4\))
\(\Rightarrow\frac{a}{2}+\frac{b}{2}\le\sqrt{2}\Leftrightarrow\frac{a}{2}+\frac{b}{2}-1\le\sqrt{2}-1\)
Vậy GTLN của biểu thức \(M=\frac{ab}{a+b+2}\)là \(\sqrt{2}-1\).
Ta có : \(\left(a+b\right)^2=a^2+b^2+2ab=4+2ab\)
\(\Rightarrow a+b=\sqrt{4+2ab}\)
Khi đó \(M=\frac{ab}{\sqrt{4+2ab}+2}\)
Dễ thấy \(\sqrt{4+2ab}>2\)nên có thể nhân liên hợp
\(M=\frac{ab}{\sqrt{4+2ab}+2}=\frac{ab\left(\sqrt{4+2ab}-2\right)}{\left(\sqrt{4+2ab}+2\right)\left(\sqrt{4+2ab}-b\right)}\)
\(=\frac{ab\left(\sqrt{4+2ab}-2\right)}{4+2ab-4}\)
\(=\frac{ab\left(\sqrt{4+2ab}-2\right)}{2ab}\)
\(=\frac{\sqrt{4+2ab}-2}{2}\le\frac{\sqrt{4+a^2+b^2}-2}{2}\)
\(=\frac{\sqrt{4+4}-2}{2}=\sqrt{2}-1\)
Dấu "=" tại \(a=b=\sqrt{2}\)