K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2017

đặt a+b=t => ab=t2-4

2 tháng 10 2019

Ta có: \(a^2+b^2=4\Leftrightarrow2ab=\left(a+b\right)^2-4\)

\(\Rightarrow2M=\frac{\left(a+b\right)^2-4}{a+b+2}=a+b-2\)

Ta có: \(a+b\le\sqrt{2\left(a^2+b^2\right)}=2\sqrt{2}\Rightarrow M\le\sqrt{2}-1\)

Dấu "="\(\Leftrightarrow a=b=\sqrt{2}\)

Vậy \(M_{max}=\sqrt{2}-1\Leftrightarrow a=b=\sqrt{2}\)

1 tháng 5 2018

bn sử dụng bất đẳng thức cô si đi

1 tháng 5 2018

Nguyễn Đại Nghĩa,bác nói cụ thể hơn được ko :v

12 tháng 9 2021

Dễ chứng minh được \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)\(\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\left(true\right)\)

\(\Rightarrow2\left(a+b+c\right)\ge\frac{\left(a+b+c\right)^2}{3}\)

\(\Leftrightarrow a+b+c\le6\)

Ta có : \(T=\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}\)

\(=1-\frac{1}{a+1}+1-\frac{1}{b+1}+1-\frac{1}{c+1}\)

\(=3-\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)\)

\(\le3-\frac{9}{a+b+c+3}\le3-\frac{9}{6+3}=2\)

Dấu "=" xảy ra khi \(a=b=c=2\)

12 tháng 9 2021

bạn ơi , kết quả thì đúng r nhưng tại sao đoạn \(2\left(a+b+c\right)\ge\frac{\left(a+b+c\right)^2}{3}\Rightarrow a+b+c\le6\)

24 tháng 11 2017

fkfkbang14

20 tháng 7 2017

thỏa cái j sửa đi

11 tháng 8 2016

M đạt giá trị lớn nhất <=> \(\frac{1}{M}\) đạt giá trị nhỏ nhất

Do đó, ta xét : 

\(\frac{1}{M}=\frac{x+y+2}{xy}=\frac{1}{x}+\frac{1}{y}+\frac{2}{xy}\)

Áp dụng bđt \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\), (dấu "=" xảy ra khi a = b) , ta có : \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\ge\frac{4}{\sqrt{2\left(x^2+y^2\right)}}=\frac{4}{2\sqrt{2}}=\sqrt{2}\)

Lại có : \(x^2+y^2\ge2xy\Rightarrow\frac{2}{xy}\ge\frac{4}{x^2+y^2}=\frac{4}{4}=1\)

Suy ra \(\frac{1}{M}\ge\sqrt{2}+1\Rightarrow M\le\frac{1}{\sqrt{2}+1}=\sqrt{2}-1\)

Dấu đẳng thức xảy ra khi \(\begin{cases}x=y\\x^2+y^2=4\end{cases}\) \(\Leftrightarrow x=y=\sqrt{2}\)

Vậy Max M = \(\sqrt{2}-1\) tại \(x=y=\sqrt{2}\)

20 tháng 6 2019

Ta có: \(a^2+b^2=4\Leftrightarrow a^2+2ab+b^2=4+2ab\)

\(\Leftrightarrow\left(a+b\right)^2=4+2ab\Leftrightarrow\left(a+b\right)^2-4=2ab\)

\(\Leftrightarrow\left(a+b+2\right)\left(a+b-2\right)=2ab\Leftrightarrow\frac{\left(a+b+2\right)\left(a+b-2\right)}{2}=ab\)

\(M=\frac{ab}{a+b+2}=\frac{\left(a+b+2\right)\left(a+b-2\right)}{2\left(a+b+2\right)}=\frac{a+b-2}{2}\)

\(\Leftrightarrow M=\frac{a}{2}+\frac{b}{2}-1\). Áp dụng bất đẳng thức Bunhiaxoopki cho 2 số a/2 và b/2 ta có:

\(\left(\frac{a}{2}+\frac{b}{2}\right)^2\le\left[\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^2\right]\left(a^2+b^2\right)\)

\(\Leftrightarrow\left(\frac{a}{2}+\frac{b}{2}\right)^2\le\frac{1}{2}.4=2\)( do \(a^2+b^2=4\))

\(\Rightarrow\frac{a}{2}+\frac{b}{2}\le\sqrt{2}\Leftrightarrow\frac{a}{2}+\frac{b}{2}-1\le\sqrt{2}-1\)

Vậy GTLN của biểu thức \(M=\frac{ab}{a+b+2}\)là \(\sqrt{2}-1\).

20 tháng 6 2019

Ta có : \(\left(a+b\right)^2=a^2+b^2+2ab=4+2ab\)

\(\Rightarrow a+b=\sqrt{4+2ab}\)

Khi đó \(M=\frac{ab}{\sqrt{4+2ab}+2}\)

Dễ thấy \(\sqrt{4+2ab}>2\)nên có thể nhân liên hợp

\(M=\frac{ab}{\sqrt{4+2ab}+2}=\frac{ab\left(\sqrt{4+2ab}-2\right)}{\left(\sqrt{4+2ab}+2\right)\left(\sqrt{4+2ab}-b\right)}\)

                                            \(=\frac{ab\left(\sqrt{4+2ab}-2\right)}{4+2ab-4}\)

                                            \(=\frac{ab\left(\sqrt{4+2ab}-2\right)}{2ab}\)

                                             \(=\frac{\sqrt{4+2ab}-2}{2}\le\frac{\sqrt{4+a^2+b^2}-2}{2}\)

                                                                                       \(=\frac{\sqrt{4+4}-2}{2}=\sqrt{2}-1\)

Dấu "=" tại \(a=b=\sqrt{2}\)