Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đẳng thức xảy ra khi sinx ≠ 0 và cosx ≠ 0, tức là x ≠ kπ/2, k ∈ Z
a) Trên hình là đô thị hàm số y = tanx , đường y = - 1 , y = 0 ( chính là trục x'Ox ) . ( thiếu hình vẽ )
Các điểm \(\left(-\frac{\pi}{4};-1\right);\left(\frac{3\pi}{4};-1\right)...\) là các điểm có hoành độ là nghiệm của phương trình tanx = - 1 . Các điểm \(\left(-\pi;0\right),\left(0;0\right),\left(\pi;0\right)\) , là các điểm có hoành độ là nghiệm của phương trình tanx = 0
b) Học sinh tự vẽ đô thị hàm số y = cotx và chỉ ra các điểm có hoành độ là nghiệm của phương cotx = \(\frac{\sqrt{3}}{3};cotx=1\)
Đẳng thức xảy ra khi các biểu thức ở hai vế có nghĩa tức là sinx ≠ 0 và cosx ≠ 0. Vậy đẳng thức xảy ra khi x ≠ kπ/2, k ∈ Z
Lời giải:
a.
$(2\cos x+\sqrt{2})(\cos x-2)=0$
\(\Rightarrow \left[\begin{matrix} 2\cos x+\sqrt{2}=0\\ \cos x-2=0\end{matrix}\right.\)
Nếu $2\cos x+\sqrt{2}=0\Rightarrow \cos x=\frac{-\sqrt{2}}{2}\Rightarrow x=\pm \frac{3\pi}{4}+2k\pi$ với $k$ nguyên
Nếu $\cos x-2=0\Leftrightarrow \cos x=2$ (vô lý vì $\cos x\leq 1$)
b.
PT \(\Rightarrow \left[\begin{matrix} \tan x=\sqrt{3}\\ \tan x=1\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{\pi}{3}+k\pi\\ x=\frac{\pi}{4}+k\pi\end{matrix}\right.\) với $k$ nguyên
c.
PT \(\Rightarrow \left[\begin{matrix} \cot \frac{x}{3}=1\\ \cot \frac{x}{2}=-1\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{3}{4}\pi +3k\pi\\ x=\frac{-\pi}{2}+2k\pi \end{matrix}\right.\) với $k$ nguyên.
a/
\(\Leftrightarrow\left[{}\begin{matrix}2cosx+\sqrt{2}=0\\cosx-2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}cosx=-\frac{\sqrt{2}}{2}\\cosx=2>1\left(l\right)\end{matrix}\right.\)
\(\Rightarrow x=\pm\frac{3\pi}{4}+k2\pi\)
b/ ĐKXĐ: ...
\(\Leftrightarrow\left[{}\begin{matrix}tanx-\sqrt{3}=0\\1-tanx=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}tanx=\sqrt{3}\\tanx=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{3}+k\pi\\x=\frac{\pi}{4}+k\pi\end{matrix}\right.\)
c/ĐKXĐ: ...
\(\Leftrightarrow\left[{}\begin{matrix}cot\frac{x}{3}=1\\cot\frac{x}{2}=-1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\frac{x}{3}=\frac{\pi}{4}+k\pi\\\frac{x}{2}=-\frac{\pi}{4}+k\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{3\pi}{4}+k3\pi\\x=-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)
Lời giải:
Áp dụng công thức: $\cos 2x=\cos ^2x-\sin ^2x=1-2\sin ^2x=2\cos ^2x-1$ ta có:
\(\frac{6+2\cos 4a}{1-\cos 4a}=\frac{6+2(2\cos ^22a-1)}{2\sin ^22a}=\frac{2+2\cos ^22a}{\sin ^22a}=\frac{2+2(\cos ^2a-\sin ^2a)^2}{4\sin ^2a\cos ^2a}\)
\(=\frac{1+(\sin ^2a-\cos ^2a)^2}{2\sin ^2a\cos ^2a}=\frac{(\sin ^2a+\cos ^2a)^2+(\sin ^2a-\cos ^2a)^2}{2\sin ^2a\cos ^2a}=\frac{2(\sin ^4a+\cos ^4a)}{2\sin ^2a\cos ^2a}=\frac{\sin ^4a+\cos ^4a}{\sin ^2a\cos ^2a}\)
\(=\frac{\sin ^2a}{\cos ^2a}+\frac{\cos ^2a}{\sin ^2a}=\tan ^2a+\cot ^2a\) (đpcm)
3.
ĐKXĐ: ...
\(\Leftrightarrow tan^22x+\left(\frac{1}{cos^22x}+1\right)=8\)
\(\Leftrightarrow tan^22x+tan^22x=8\)
\(\Leftrightarrow tan^22x=4\)
\(\Rightarrow\left[{}\begin{matrix}tan2x=2\\tan2x=-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=arctan\left(2\right)+k180^0\\2x=-arctan\left(2\right)+k180^0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{1}{2}arctan\left(2\right)+k90^0\\x=-\frac{1}{2}arctan\left(2\right)+k90^0\end{matrix}\right.\)
Nghiệm trên nhận các giá trị \(k=\left\{0;1;2;3\right\}\) ; nghiệm dưới nhận các giá trị \(k=\left\{1;2;3;4\right\}\)
1. ĐKXĐ: ...
\(\Leftrightarrow tan\left(x+\frac{\pi}{3}\right)=\frac{1}{tan\left(2x-\frac{\pi}{4}\right)}\)
\(\Leftrightarrow tan\left(x+\frac{\pi}{3}\right)=cot\left(2x-\frac{\pi}{4}\right)\)
\(\Leftrightarrow tan\left(x+\frac{\pi}{3}\right)=tan\left(\frac{3\pi}{4}-2x\right)\)
\(\Leftrightarrow x+\frac{\pi}{3}=\frac{3\pi}{4}-2x+k\pi\)
\(\Rightarrow x=\frac{5\pi}{36}+\frac{k\pi}{3}\)
2.
ĐKXĐ: ...
\(\Leftrightarrow tan\left(x+1\right)=\frac{1}{cot\left(2x+3\right)}\)
\(\Leftrightarrow tan\left(x+1\right)=tan\left(2x+3\right)\)
\(\Leftrightarrow2x+3=x+1+k\pi\)
\(\Rightarrow x=-2+k\pi\)
Tất cả.