K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2021

\(a,\Leftrightarrow f\left(x\right)⋮g\left(x\right)=\left(x+2\right)^2\\ \Leftrightarrow f\left(-2\right)=-8+4a-4=0\\ \Leftrightarrow a=3\\ b,\Leftrightarrow f\left(x\right)⋮g\left(x\right)=\left(x-1\right)\left(x+1\right)\\ \Leftrightarrow f\left(1\right)=f\left(-1\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}1+a+b-1=0\\1-a-b-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=0\\a+b=0\end{matrix}\right.\Leftrightarrow a,b\in R\\ \text{Vậy }f\left(x\right)⋮g\left(x\right),\forall a,b\\ c,\Leftrightarrow f\left(1\right)=f\left(-2\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}2-3a+2+b=0\\-18-12a-4+b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a-b=4\\12a-b=-22\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{26}{9}\\b=-\dfrac{38}{3}\end{matrix}\right.\)

20 tháng 10 2018

x^3+ax^2+2x+b chia cho x^2+x+1 = x dư (a-1)x^2+x+b 
để f(x) chia hết cho g(x) thì a-1 = 1 và b=1 => a=2 , b=1

20 tháng 10 2018

làm từng bước nha!

NV
5 tháng 10 2019

Sử dụng định lý Bezout:

a/ \(g\left(x\right)=0\Rightarrow\left\{{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

\(f\left(x\right)⋮g\left(x\right)\Rightarrow\left\{{}\begin{matrix}f\left(1\right)=0\\f\left(2\right)=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=1\\2a+b=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=3\\b=-2\end{matrix}\right.\)

b/ \(g\left(x\right)=0\Rightarrow x=-1\)

\(\Rightarrow f\left(-1\right)=0\Rightarrow-a+b=2\Rightarrow b=a+2\)

Tất cả các đa thức có dạng \(f\left(x\right)=2x^3+ax+a+2\) đều chia hết \(g\left(x\right)=x+1\) với mọi a

c/ \(g\left(x\right)=0\Rightarrow x=-2\Rightarrow f\left(-2\right)=0\Rightarrow4a+b=-30\)

\(2x^4+ax^2+x+b=\left(x^2-1\right).Q\left(x\right)+x\)

Thay \(x=1\Rightarrow a+b=-2\)

\(\Rightarrow\left\{{}\begin{matrix}4a+b=-30\\a+b=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\frac{28}{3}\\b=\frac{22}{3}\end{matrix}\right.\)

d/ Tương tự: \(\left\{{}\begin{matrix}f\left(2\right)=8a+4b-40=0\\f\left(-5\right)=-125a+25b-75=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\\b=\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
26 tháng 6 2024

Lời giải:

$f(x)=x^4+x^3+ax^2+4x+b=x^2(x^2-2x+2)+3x(x^2-2x+2)+(a+4)x^2-2x+b$

$=(x^2+3x)(x^2-2x+2)+(a+4)(x^2-2x+2)+2(a+3)x-2(a+4)+b$

$=(x^2+3x+a+4)(x^2-2x+2)+2(a+3)x-2(a+4)+b$

$=(x^2+3x+a+4)g(x)+2(a+3)x-2(a+4)+b$

Để $f(x)\vdots g(x)$ thì:

$2(a+3)x-2(a+4)+b=0,\forall x$

$\Rightarrow a+3=-2(a+4)+b=0$

$\Rightarrow a=-3; b=2$

4 tháng 10 2019

a) Ta có: \(g\left(x\right)=x^2-3x+2\)

                          \(=x^2-x-2x+2\)

                            \(=x\left(x-1\right)-2\left(x-1\right)\)

                           \(=\left(x-1\right)\left(x-2\right)\)

Vì \(f\left(x\right)⋮g\left(x\right)\)

\(\Rightarrow f\left(x\right)=\left(x-1\right)\left(x-2\right)q\left(x\right)\)

\(\Rightarrow\hept{\begin{cases}f\left(1\right)=\left(1-1\right)\left(1-2\right)q\left(1\right)=0\left(1\right)\\f\left(2\right)=\left(1-2\right)\left(2-2\right)q\left(2\right)=0\left(2\right)\end{cases}}\)

Từ \(\left(1\right)\Leftrightarrow1^4-3.1^3+1^2+a+b=0\)

\(\Leftrightarrow-1+a+b=0\)

\(\Leftrightarrow a+b=1\left(3\right)\)

Từ \(\left(2\right)\Leftrightarrow2^4-3.2^3+2^2+2a+b=0\)

\(\Leftrightarrow-4+2a+b=0\)

\(\Leftrightarrow2a+b=4\left(4\right)\)

Từ \(\left(3\right);\left(4\right)\Rightarrow\hept{\begin{cases}a+b=1\\2a+b=4\end{cases}\Leftrightarrow\hept{\begin{cases}a=3\\b=-2\end{cases}}}\)

Vậy a=3 và b=-2 để \(f\left(x\right)⋮g\left(x\right)\)

Các phần sau tương tự

14 tháng 11 2022

a: \(\Leftrightarrow x^4-x^2-3x^3+6x+\left(b+1\right)x^2-b-1+\left(a-6\right)x+2b+1⋮x^2-1\)

=>a-6=0 và 2b+1=0

=>a=6; b=-1/2

b: =2x^2-3x

=2(x^2-3/2x)

=2(x^2-2*x*3/4+9/16-9/16)

=2(x-3/4)^2-9/8>=-9/8

Dấu = xảy ra khi x=3/4

1 tháng 11 2018

1. Thực hiện phép chia đa thức: ta có kết quả:

\(x^3+5x^2+3x+a=\left(x+3\right)\left(x^2+2x+b\right)+\left(-3-b\right)x+a-3b\)

Để f(x) chia hết cho x2+2x+b thì -3-b=0 và a-3b=0 <=> b=-3; a=-9