Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT Cô-si cho các số dương ta có:
$a+b\geq 2\sqrt{ab}$
$b+c\geq 2\sqrt{bc}$
$c+a\geq 2\sqrt{ca}$
Nhân theo vế thu được: $(a+b)(b+c)(c+a)\geq 8abc$
Dấu "=" xảy ra khi $a=b; b=c; c=a$ hay $a=b=c$ (đpcm)
Đề phải cho \(a,b,c\) là các số dương nữa :)
Giải:
Áp dụng BĐT Cauchy - Schwarz
\(\Rightarrow\hept{\begin{cases}a+b\ge2\sqrt{ab}\\b+c\ge2\sqrt{bc}\\c+a\ge2\sqrt{ca}\end{cases}}\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ca}\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\) (Đpcm)
Đẳng thức xảy ra \(\Leftrightarrow a=b=c=1\)
Cô-Si 2 số dương:
\(\hept{\begin{cases}a+b\ge2\sqrt{ab}\\b+c\ge2\sqrt{bc}\\c+a\ge2\sqrt{ca}\end{cases}}\)
\(=>\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ca}=\left(2.2.2\right)\left(\sqrt{ab}.\sqrt{bc}.\sqrt{ca}\right)=8abc\)
bạn phân tích (a+b+c)^3 ra rồi trừ đi 8abc
Áp dụng bất đẳng thức tam giác là ra (a+b+c)^3 -8abc luôn > o
Làm cách đó hơi dài
Áp dụng BĐT tam giác ta có
\(\hept{\begin{cases}a+b>c\\b+c>a\\c+a>b\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a+b+c>2c\\a+b+c>2a\\a+b+c>2c\end{cases}}\)
\(\Rightarrow\left(a+b+c\right)^3>8abc\)
Mình học lớp 7 nên chỉ làm được phần b, thôi
b, * Nếu x=1 thì:
1+1=2
* Nếu x=2 thì:
2+ 1/2 >2
* Nếu x>2
=> x + 1/x > 2 ( vì 1/x là số dương )
Vậy x + 1/x >=2 (x>0)
Phần A mình tìm được ở trang này nè http://olm.vn/hoi-dap/question/162099.html
Em nghĩ đề là \(a,b,c>0\)
Đặt \(\left(a+b+c;ab+bc+ca;abc\right)=\left(3u;3v^2,w^3\right)\) và \(u^2=tv^2\)
gt \(\Leftrightarrow uw^3=v^2\). Chú ý \(w^3\le uv^2\Leftrightarrow\frac{v^2}{u}\le v^2\Leftrightarrow u\ge1\)
Cần chứng minh: \(15u\ge7+8w^3\Leftrightarrow15u^2\ge7u+8v^2\)
\(\Leftrightarrow8\left(u^2-v^2\right)+7u\left(u-1\right)\ge0\) (hiển nhiên đúng)
cho hỏi ngu tý: nhân lại vs nhau sẽ đc vế pải: 8*(căn ab)*(căn bc)*(căn ac) thì biến đổi tiếp như nào?