K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2017

Đề phải cho \(a,b,c\) là các số dương nữa :)

Giải:

Áp dụng BĐT Cauchy - Schwarz

\(\Rightarrow\hept{\begin{cases}a+b\ge2\sqrt{ab}\\b+c\ge2\sqrt{bc}\\c+a\ge2\sqrt{ca}\end{cases}}\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ca}\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\) (Đpcm)

Đẳng thức xảy ra \(\Leftrightarrow a=b=c=1\)

27 tháng 5 2019

Bổ sung đk a,b,c > 0

BĐT \(\Leftrightarrow a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a-b\right)^2\ge0\) (đúng)

\(\Rightarrow\) Q.E.D

Dấu "=" xảy ra tại a =b =c 

26 tháng 4 2016

ta có : \(a+b>=2\sqrt{ab};b+c>=2\sqrt{bc};c+a>=2\sqrt{ca}\)

=> (a+b)(b+c)(c+a)>=\(2\sqrt{ab}\cdot2\sqrt{bc}\cdot2\sqrt{ca}=8\sqrt{a^2b^2c^2}=8abc\)

26 tháng 4 2016

Bạn Anh làm đúng

9 tháng 3 2019

a ) Áp dụng BĐT phụ \(a^2+b^2\ge2ab\) cho các cặp số thực , ta có :

\(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2a.2b.2c=8abc\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=c=1\)

b ) Làm tương tự như a )

9 tháng 3 2019

Ta có: \(\left(a-b\right)^2\ge0\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow a^2+b^2\ge2ab\)

a) Lại có : \(\left(a-1\right)^2\ge0\Leftrightarrow...\Leftrightarrow a^2+1\ge2a\)

cmtt \(\Rightarrow\left\{{}\begin{matrix}b^2+1\ge2b\\c^2+1\ge2c\end{matrix}\right.\)

Nhân vế theo vế ta đc: \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2a.2b.2c=8abc\left(dpcm\right)\)

b) Tiếp tục có \(\left(a-2\right)^2\ge0\Leftrightarrow...\Leftrightarrow a^2+4\ge4a\)

CMTT: \(\Rightarrow\left\{{}\begin{matrix}b^2+4\ge4b\\c^2+4\ge4c\end{matrix}\right.\)

Nhân vế theo vế ta đc: \(\left(a^2+4\right)\left(b^2+4\right)\left(c^2+4\right)\ge4a.4b.4c=256abc\left(dpcm\right)\)

9 tháng 3 2019

(a^2+b^2)/2>=ab

<=>(a^2+b^2)>=2ab

 <=> a^2+2ab+b^2>=2ab 

<=>a^2+b^2>=0(luôn đúng)

=> điều phải chứng minh.

9 tháng 3 2019

Xét hiệu:  \(a^2+b^2-2ab=\left(a-b\right)^2\ge0\)

=>  \(a^2+b^2\ge2ab\)

Dấu "=" xra  <=>  a = b

Áp dụng ta có:

a)  \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2a.2b.2c=8abc\)

dấu "=" xra  <=>  a = b = c = 1

b)  \(\left(a^2+4\right)\left(b^2+4\right)\left(c^2+4\right)\left(d^2+4\right)\ge4a.4b.4c.4d=256abcd\)

Dấu "=" xra  <=>  a = b= c = d = 2

13 tháng 10 2016

Cô-Si 2 số dương:

\(\hept{\begin{cases}a+b\ge2\sqrt{ab}\\b+c\ge2\sqrt{bc}\\c+a\ge2\sqrt{ca}\end{cases}}\)

\(=>\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ca}=\left(2.2.2\right)\left(\sqrt{ab}.\sqrt{bc}.\sqrt{ca}\right)=8abc\)

17 tháng 7 2015

cho hỏi ngu tý: nhân lại vs nhau sẽ đc vế pải: 8*(căn ab)*(căn bc)*(căn ac) thì biến đổi tiếp như nào?

AH
Akai Haruma
Giáo viên
4 tháng 7 2020

Lời giải:
Áp dụng BĐT Cô-si cho các số dương ta có:

$a+b\geq 2\sqrt{ab}$

$b+c\geq 2\sqrt{bc}$

$c+a\geq 2\sqrt{ca}$

Nhân theo vế thu được: $(a+b)(b+c)(c+a)\geq 8abc$

Dấu "=" xảy ra khi $a=b; b=c; c=a$ hay $a=b=c$ (đpcm)

20 tháng 5 2016

ta có : \(a+b>=2\sqrt{ab};b+c>=2\sqrt{bc};c+a>=2\sqrt{ca}\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)>=2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ca}=8\sqrt{a^2b^2c^2}=8abc\)

 

25 tháng 5 2016

(a+b)>=2can(ab) 
(b+c)>=2can(bc) 
(a+c)>=2can(ac) 
nhân cả ca cái lại nha =>(a+b).(b+c).(a+c)>=8abc

14 tháng 2 2016

lên rùi nè nhanh lên

14 tháng 2 2016

em gửi rồi nè