K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2021

\(A=2^2+2^3+2^4+...+2^{20}\)
\(2A=2^3+2^4+2^5+...+2^{21}\)
\(A=2A-A=2^{21}-2^2\)

29 tháng 10 2018

\(A=2+2^2+...+2^{20}\)

\(2A=2^2+2^3+...+2^{21}\)

\(A=2^{21}-2\)

29 tháng 10 2018

\(A=4+2^2+2^3+.......+2^{20}\)

\(A=4+2^2+2^3+.......+2^{20}\)

\(2A=8+2^{3^{ }}+.........+2^{21}\)

\(2A-A=A=2^{21}+2^{20}+......+8-4-2^2-......-2^{20}\)

\(A=2^{21}\)

24 tháng 9 2016

Ta có A = 22 + 22 + 23 + 24 + ............ + 220

=> 2A = 2.(22 + 22 + 23 + 24 + ............ + 220)

=> 2A = 23 + 23 + 24 + 25 + ............ + 221 

=> 2A - A = 221 + 2- 22 - 22

=> A = 221 (đpcm)

24 tháng 9 2016

Ta có A = 22 + 22 + 23 + 24 + ............ + 220

=> 2A = 2.(22 + 22 + 23 + 24 + ............ + 220)

=> 2A = 23 + 23 + 24 + 25 + ............ + 221 

=> 2A - A = 221 + 2- 22 - 22

=> A = 221 (đpcm)

13 tháng 11 2015

Ta có 

A = 22 + 22 + 23 + 24 + .. + 220

A = 2 . 22 + 23 + 24 +.. + 220

A = 23 + 23 + 24 + .. + 220 

A = 24 + 24 + ... 220 

Làm như vậy cho đến khi A = 219 + 219 + 220

A = 220  + 220 = 2 . 220 = 221

13 tháng 11 2015

= 221 tick đi mik giải cho 

23 tháng 7 2018

A =4+2^2+2^3+...+2^50

A*2=2^3+2^3+2^4+...+2^50+2^51

A=(2^3+2^51)-(2^2+2^2)

A=8+2^51-8

A=2^51

16 tháng 12 2017

hãy viết A = 4+22+23+................220 dưới dạng lũy thừa

2A =2× (4+22+23+.......+22)

2A = 8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21 
=> 2A - A = (8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21) - (4+ 2^2 + 2 ^ 3 + 2^4 + ... + 2^20 ) 
=> A = 2^21 là một lũy thừa của 2 

AH
Akai Haruma
Giáo viên
24 tháng 10 2024

Lời giải:

$A-4=2^2+2^3+2^4+...+2^{20}$

$2(A-4)=2^3+2^4+2^5+....+2^{21}$

$\Rightarrow 2(A-4)-(A-4)=2^{21}-2^2$

$\Rightarrow A-4=2^{21}-4$

$\Rightarrow A=2^{21}$