K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2021

\(a)\)

\(4x^2-4x+1\)\(=\left(2x-1\right)^2\)

\(b)\)

\(\left(3x+2\right)\left(2-3x\right)\)\(=4-9x^2\)

\(c)\)

\(\left(x-3\right)\left(x^2+3x+9\right)\)\(=x^3-27\)

1 tháng 7 2021

\(a,4x^2-4x+1=\left(2x\right)^2-2.2x.1+1=\left(2x-1\right)^2\)

\(b,\left(3x+2\right)\left(2-3x\right)=\left(2+3x\right)\left(2-3x\right)=2^2-\left(3x\right)^2\)

\(c,\left(x-3\right)\left(x^2+3x+9\right)=\left(x-3\right)\left(x^2+3x.1+3^2\right)=x^3-3^3\)

20 tháng 6 2017

theo thứ tự nka 

=(2x-1)^2

=2^2-(3x)^2=4-9x^2

=x^3-27

25 tháng 7 2018

\(a.\left(2x-3\right)\left(4x^2+6x+9\right)-\left(2x+3\right)\left(4x^2-6x+9\right)\\ =\left(2x\right)^3-3^3-\left[\left(2x\right)^3+3^3\right]\\ =8x^3-9-\left(8x^3+9\right)\\ =8x^3-9-8x^3-9=-18\)

\(b.\left(x+1\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\\ =x^3+1-\left(x^3-1\right)\\ =x^3+1-x^3+1=2\)

\(c.\left(3x-1\right)\left(3x+1\right)-\left(3x-2\right)^2\\ =9x^2-1-\left(9x^2-12x+4\right)\\ =9x^2-1-9x^2+12x-4\\ =12x-5\)

\(d.\left(2x-3\right)^2-\left(2x+3\right)\left(2x-3\right)\\ =\left(2x-3\right)\cdot\left[\left(2x-3\right)-\left(2x+3\right)\right]\\ =\left(2x-3\right)\cdot\left(2x-3-2x-3\right)\\ =\left(2x-3\right)\cdot\left(-6\right)\\ =-12x\cdot18\)

\(e.\left(3x-4\right)^2-\left(2x+4\right)^2\\ =9x^2-24x+16-\left(4x^2+16x+16\right)\\ =9x^2-24x+16-4x^2-16x-16\\ =5x^2-40x\)

\(f.\left(3x-5\right)^3-\left(3x+5\right)^3\\ =27x^3-135x^2+225x-125-\left(27x^3+135x^2+225x+125\right)\\ =27x^3-135x^2+225x-125-27x^3-135x^2-225x-125\\ =-270x^2-250\)

\(g.\left(2x-1\right)^2-\left(3x-1\right)^2\\ =4x^2-4x+1-\left(9x^2-6x+1\right)\\ =4x^2-4x+1-9x^2+6x-1\\ =-5x^2+2x\)

\(h.\left(x-2y\right)\left(x^2+2xy+4y^2\right)+\left(x^3-6y^3\right)\\ =x^3-8y^3+x^3-6y^3\\ =2x^3-14y^3\)

3 tháng 12 2017

- Viết 7 hằng đẳng thức đáng nhớ :

\(\left(A+B\right)^2=A^2+2AB+B^2\)

\(\left(A-B\right)^2=A^2-2AB+B^2\)

\(A^2-B^2=\left(A-B\right)\left(A+B\right)\)

\(\left(A+B\right)^3=A^3+3A^2B+3AB^2+B^3\)

\(\left(A-B\right)^3=A^3-3A^2B+3AB^2-B^3\)

\(A^3-B^3=\left(A-B\right)\left(A^2+AB+B^2\right)\)

\(A^3+B^3=\left(A+B\right)\left(A^2-AB+B^2\right)\)

- Áp dụng :

\(a,\left(x+2y\right)^2=x^2+4xy+4y^2\)

\(b,\left(\dfrac{5x-1}{2}\right)^2=\dfrac{\left(5x-1\right)^2}{2^2}=\dfrac{25x^2-10x+1}{4}\)

\(c,\left(\dfrac{1}{3x-3}\right)\left(\dfrac{1}{3x+3}\right)=\dfrac{1.1}{\left(3x-3\right)\left(3x+3\right)}=\dfrac{1}{9x^2-9}\)

\(d,\left(2x+3\right)^3=8x^3+36x^2+54x+27\)

\(e,\left(\dfrac{1}{4y-2x}\right)^2=\dfrac{1}{\left(4y-2x\right)^2}=\dfrac{1}{16y^2-16xy+4x^2}\)

\(f,\left(2x-y\right)\left(4x^2+2xy+y^2\right)=\left(2x\right)^3-y^3=8x^3-y^3\)

\(g,\left(x+3\right)\left(x^2-3x+9\right)=x^3+27\)

17 tháng 7 2018

\(\left(x+4\right)\left(x^2-4x+16\right)\)

\(=x^3-4x^2+16x+4x^2-16x+64\)

\(=x^3+64\)

\(\left(x-3y\right)\left(x^2+3xy+9y^2\right)\)

\(=x^2+3x^2y+9xy^2-3x^2y-9xy^2-27y^3\)

\(=\)\(x^2-27y^3\)

\(\left(\frac{1}{3}x+2y\right)\left(\frac{1}{9}x^2-\frac{2}{3xy}+4y^2\right)\)

\(=\)\(\frac{x^3}{27}-\frac{2}{9xy}+\frac{4xy^2}{3}+\frac{2x^2y}{9}-\frac{4y}{3xy}+8y^3\)

làm nốt nha

27 tháng 10 2018

Bài 1: Thực hiện phép tính

a) 3x(2x2 - 5x + 9) = \(6x^3-15x^2+27x\)

b) 5x(x2-xy+1) = \(5x^3-5xy+5x\)

c) -2/3x2y(3xy-x2+y) = \(-2x^3y^2+\dfrac{2}{3}x^4y-\dfrac{2}{3}x^2y^2\)

2) Thực hiện phép tính

a) (5x-2y) (x2-xy+1) = \(5x^3+5x-7y-2x^3y+2xy^2\)

b) (x+3y)(x2-2xy+y) = \(x^3-x^2y+xy+6xy^2+y^2\)

c) (3x-5y) (4x+ 7y) = \(12x^2-xy-35y^2\)

Bài 3: Rút gọn các biểu thức sau(bằng cách khai triển hằng đẳng thức):

a) (x+y)2+(x-y)2

= \(x^2+2xy+y^2+x^2-2xy+y^2\)

= \(\left(x^2+x^2\right)+\left(2xy-2xy\right)+\left(y^2+y^2\right)\)

= \(2x^2+2y^2=2\left(x^2+y^2\right)\)

b) (x+2)(x-2)-(x-3)(x+1)

= \(x^2-4\) - \(\left(x^2-2x-3\right)\)= \(x^2-4-x^2+2x+3\)

= \(\left(x^2-x^2\right)+2x+\left(-4+3\right)\)=\(2x-1\)

c) (x-2)(x+2)-(x-2)2

=>\(x^2-4-\left(x^2-2.x.2+2^2\right)=x^2-4-x^2-4x+4=\left(x^2-x^2\right)+\left(-4+4\right)-4x=-4x\)

d) (2x+y)(4x2-2xy+y2)-(2x-y)(4x2+2xy+y2)

= \(8x^3+y^3-\left(8x^3-y^3\right)\)

= \(8x^3+y^3-8x^3+y^3\)

= \(\left(8x^3-8x^3\right)+\left(y^3+y^3\right)\)= \(2y^3\)

7 tháng 6 2016

\(a,\left(x+3\right).\left(x^2-3x+9\right)-\left(54+x^3\right)=x^3+27-54-x^3=-27.\)

\(b,8x^3+y^3-8x^3+y^3=2y^3\)

6 tháng 6 2016

bấm hích nhé,mình sẽ àm cho bạn^^

10 tháng 7 2019

1) \(\left(3x+7\right)^2-\left(2x-3\right)^2=0\)

\(\Leftrightarrow\left(3x+7-2x+3\right)\left(3x+7+2x-3\right)=0\)

\(\Leftrightarrow\left(x+10\right)\left(5x+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+10=0\\5x+4=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-10\\x=\frac{-4}{5}\end{cases}}\)

Vạy ...

phần 2 tương tự áp dụng \(a^2-b^2=\left(a-b\right)\left(a+b\right)\)

10 tháng 7 2019

\((4x-1)^2-(5-3x)^2=0\)

\(\Leftrightarrow(4x-1-5-3x)(4x+1+5-3x)=0\)

\(\Leftrightarrow(x-6)(x+6)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-6=0\\x+6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=6\\x=-6\end{cases}}\)

Vậy : ...

9 tháng 6 2018

a) \(\left(3x-4\right)^2+2\left(3x-4\right)\left(2x+4\right)+\left(2x+4\right)^2\)\(=\left(3x-4+2x+4\right)^2=\left(5x\right)^2=25x^2\)

b)\(\left(3x+4\right)^2+\left(7+3x\right)^2-\left(6x+8\right)\left(3x+7\right)\)

\(=\left(3x+4\right)^2-2\left(3x+4\right)\left(7+3x\right)+\left(7+3x\right)^2\)

\(=\left[3x+4-\left(7+3x\right)\right]^2=\left(3x+4-7-3x\right)^2=\left(-3\right)^2=9\)

c)\(\left(2x+1\right)^2+2\left(4x^2-1\right)+\left(2x-1\right)^2\)

\(=\left(2x+1\right)^2+2\left(\left(2x\right)^2-1^2\right)+\left(2x-1\right)^2\)

\(=\left(2x+1\right)^2+2\left(2x+1\right)\left(2x-1\right)+\left(2x-1\right)^2\)

\(=\left(2x+1+2x-1\right)^2=\left(4x\right)^2=14x^2\)

xong rồi đấy,bạn k cho mình nhé

28 tháng 7 2019

Bài 2:

a) \(x^2+y^2-9-2xy\)

\(=\left(x^2-2xy+y^2\right)-3^2\)

\(=\left(x-y\right)^2-3^2\)

\(=\left(x-y-3\right)\left(x-y+3\right)\)

b) \(4x^2-5x-9\)

\(=4x^2+4x-9x-9\)

\(=4x\left(x+1\right)-9\left(x+1\right)\)

\(=\left(x+1\right)\left(4x-9\right)\)

28 tháng 7 2019

\(\left(2x-3\right)^2-\left(4x-1\right)\left(x+2\right)=4x^2-12x+9-4x^2-7x+2=-19x+11\)

\(\left(3x+2\right)\left(3x-2\right)-\left(3x-1\right)^2=9x^2-4-9x^2+6x-1=6x-5\)

\(x^2+y^2-9-2xy=\left(x-y\right)^2-9=\left(x-y-3\right)\left(x-y+3\right)\)

\(4x^2-5x-9=\left(4x-9\right)\left(x+1\right)\)

\(\left(x-3\right)^2-\left(x-1\right)\left(x-2\right)=5\Leftrightarrow x^2-6x+9-x^2+3x-2=5\)

\(\Leftrightarrow-3x=-2\Leftrightarrow x=x=\frac{2}{3}\)

\(3x^2+5x-8=0\Leftrightarrow\left(x-1\right)\left(3x+8\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{8}{3}\end{cases}}\)