Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1
a)
\(A=\dfrac{1}{3+2\sqrt{2}}+\dfrac{1}{3-2\sqrt{2}}=\dfrac{\left(3-2\sqrt{2}\right)+\left(3+2\sqrt{2}\right)}{\left(3\right)^2-\left(2\sqrt{2}\right)^2}=\dfrac{6}{1}=6\)
bài 1 : a) vì đồ thị hàm số đi qua \(A\left(2;\dfrac{-4}{3}\right)\) nên ta có :
\(\dfrac{-4}{3}=4a\Leftrightarrow a=\dfrac{-1}{3}\) vậy \(a=\dfrac{-1}{3}\)
b) phương trình đường thẳng cần tìm có dạng : \(y=ax+b\)
vì nó đi qua \(A\left(2;\dfrac{-4}{3}\right)\) \(\Rightarrow2a+b=\dfrac{-4}{3}\) .........(1)
nó cắt đồ thị hàm số \(y=\dfrac{-1}{3}x^2\) tại \(B\) có hoành độ là \(-3\)
\(\Rightarrow\) nó đi qua điểm : \(\left(-3;-3\right)\) \(\Rightarrow-3a+b=-3\) ..............(2)
từ (1) và (2) \(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{1}{3}\\b=-2\end{matrix}\right.\) \(\Rightarrow\) đường thẳng cần tìm là \(y=\dfrac{1}{3}x-2\)
vậy ............................................................................................
bài 2 : phương trình đường thẳng cần tìm có dạng : \(y=ax+b\)
vì nó đi qua \(A\left(-2;-2\right)\Rightarrow-2a+b=-2\) ......................(1)
ta lại có nó tiếp xúc với \(\left(P\right)\) \(\Rightarrow\) phương trình : \(\dfrac{1}{2}x^2+ax+b=0\) có nghiệm duy nhất \(\Leftrightarrow a^2-2b=0\) .....................(2)
từ (1) và (2) ta có : \(\left\{{}\begin{matrix}a=2\\b=2\end{matrix}\right.\) \(\Rightarrow\) đường thẳng cần tìm là \(y=2x+2\)
vậy ......................................................................................................
Chọn B