Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Đặt: (d): y = (m+5)x + 2m - 10
Để y là hàm số bậc nhất thì: m + 5 # 0 <=> m # -5
Để y là hàm số đồng biến thì: m + 5 > 0 <=> m > -5
(d) đi qua A(2,3) nên ta có:
3 = (m+5).2 + 2m - 10
<=> 2m + 10 + 2m - 10 = 3
<=> 4m = 3
<=> m = 3/4
(d) cắt trục tung tại điểm có tung độ bằng 9 nên ta có:
9 = (m+5).0 + 2m - 10
<=> 2m - 10 = 9
<=> 2m = 19
<=> m = 19/2
(d) đi qua điểm 10 trên trục hoành nên ta có:
0 = (m+5).10 + 2m - 10
<=> 10m + 50 + 2m - 10 = 0
<=> 12m = -40
<=> m = -10/3
(d) // y = 2x - 1 nên ta có:
\(\hept{\begin{cases}m+5=2\\2m-10\ne-1\end{cases}}\) <=> \(\hept{\begin{cases}m=-3\\m\ne\frac{9}{2}\end{cases}}\) <=> \(m=-3\)
a) (d) cắt (P) tại A => A thuộc d và (P)
xA= 3; A \(\in\) d=> yA = -xA - \(\frac{3}{2}\) => yA = -3 - \(\frac{3}{2}\) = \(\frac{-9}{2}\)
Mặt khác, A \(\in\) (P) => yA = axA2 => \(\frac{-9}{2}\) = a. 32 => a = \(\frac{-9}{2}\): 9 = \(\frac{-1}{2}\)
Vậy (P) có dạng y = \(\frac{-1}{2}\).x2
+) Vẽ đồ thị:
x | -2 | -1 | 0 | 1 | 2 |
y | -2 | \(\frac{-1}{2}\) | 0 | \(\frac{-1}{2}\) | -2 |
(P) đí qua 4 điểm (-2;-2); (-1;\(\frac{-1}{2}\)); (0;0); (1;\(\frac{-1}{2}\)); (2;-2)
b) Phương trình hoành độ giao điểm: \(\frac{-1}{2}\).x2 = - x - \(\frac{3}{2}\)
<=> -x2 + 2x + 3 = 0
<=> x = -1 hoặc x = 3 (Vì a - b + c = -1 - 2 + 3 = 0)
=> xB = -1 => yB = \(\frac{-1}{2}\).(-1)2 = \(\frac{-1}{2}\)
Vậy B (-1;\(\frac{-1}{2}\))
bài 1 : a) vì đồ thị hàm số đi qua \(A\left(2;\dfrac{-4}{3}\right)\) nên ta có :
\(\dfrac{-4}{3}=4a\Leftrightarrow a=\dfrac{-1}{3}\) vậy \(a=\dfrac{-1}{3}\)
b) phương trình đường thẳng cần tìm có dạng : \(y=ax+b\)
vì nó đi qua \(A\left(2;\dfrac{-4}{3}\right)\) \(\Rightarrow2a+b=\dfrac{-4}{3}\) .........(1)
nó cắt đồ thị hàm số \(y=\dfrac{-1}{3}x^2\) tại \(B\) có hoành độ là \(-3\)
\(\Rightarrow\) nó đi qua điểm : \(\left(-3;-3\right)\) \(\Rightarrow-3a+b=-3\) ..............(2)
từ (1) và (2) \(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{1}{3}\\b=-2\end{matrix}\right.\) \(\Rightarrow\) đường thẳng cần tìm là \(y=\dfrac{1}{3}x-2\)
vậy ............................................................................................
bài 2 : phương trình đường thẳng cần tìm có dạng : \(y=ax+b\)
vì nó đi qua \(A\left(-2;-2\right)\Rightarrow-2a+b=-2\) ......................(1)
ta lại có nó tiếp xúc với \(\left(P\right)\) \(\Rightarrow\) phương trình : \(\dfrac{1}{2}x^2+ax+b=0\) có nghiệm duy nhất \(\Leftrightarrow a^2-2b=0\) .....................(2)
từ (1) và (2) ta có : \(\left\{{}\begin{matrix}a=2\\b=2\end{matrix}\right.\) \(\Rightarrow\) đường thẳng cần tìm là \(y=2x+2\)
vậy ......................................................................................................