Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x^2-2x-1\right)^2\)
\(=\left[x^2+\left(-2x\right)+\left(-1\right)\right]\left[x^2+\left(-2\right)+\left(-1\right)\right]\)
\(=\left(x^2\right)\left(x^2\right)+\left(x^2\right)\left(-2x\right)+\left(x^2\right)\left(-1\right)+\left(-2x\right)\left(x^2\right)+\left(-2x\right)\)
\(=x^4-2x^3-x^2-2x^3+4x^3+2x-x^2+2x+1\)
\(=x^4-4x^3+2x^2+4x+1\)
Mk ko chắc
a) \(\left(x^2-2x-1\right)^2\)
\(=\left(x^2-2x\right)^2-2\left(x^2+2x\right)-1\)
\(=x^4+4x^3-2x^2+4x^2+4x+1\)
\(=x^4+4x^3-2x^2+4x+1\)
b) Tương tự
\(\left(\dfrac{1}{2}+x\right)^2=\dfrac{1}{4}+x+x^2\)
\(\left(2x+1\right)^2=4x^2+4x+1\)
1. (1/2 +x)2= (1/2)2 + x +x2 = 1/4 +x +x2
(2x+1)2 = 4x2 +4x +1
chúc bạn học tốt
\(x^2+2y^2+2xy-2y+2\)
\(=\left(\frac{x^2}{2}+2xy+2y^2\right)+\left(\frac{x^2}{2}-2x+2\right)\)
\(=\left(\frac{x}{\sqrt{2}}+\sqrt{2}y\right)^2+\left(\frac{x}{\sqrt{2}}-\sqrt{2}\right)^2\)
a: \(\left(a^2+2a+3\right)\left(a^2-2a-3\right)\)
\(=\left[a^2+\left(2a+3\right)\right]\left[a^2-\left(2a+3\right)\right]\)
\(=\left(a^2\right)^2-\left(2a+3\right)^2\)
\(=a^4-\left(2a+3\right)^2\)
b: \(\left(-a^2-2a+3\right)^2\)
\(=\left(a^2+2a-3\right)^2\)
\(=a^4+4a^2+9+4a^3-18a-6a^2\)
\(=a^4+4a^3-2a^2-18a+9\)
c: \(\left(x-y-z\right)^2\)
\(=x^2-2x\left(y+z\right)+\left(y+z\right)^2\)
\(=x^2-2xy-2xz+y^2+2yz+z^2\)
d: \(\left(x+y+z\right)\left(x-y-z\right)\)
\(=x^2-\left(y+z\right)^2\)
\(=x^2-y^2-2yz-z^2\)
A)\(1-2x+x^2\)
\(=\left(1-x\right)^2\)
B)\(4y+4+y^2\)
\(=2^2+4y+y^2\)
\(=\left(2+y\right)^2\)
C)\(\frac{1}{16}+\frac{1}{2}x+x^2\)
\(=\left(\frac{1}{4}\right)^2+\frac{1}{2}x+x^2\)
\(=\left(\frac{1}{4}+x\right)\)
D)\(36x^2+12xy+y^2\)
\(=\left(6x+y\right)^2\)
\(x^2+\left(x+1\right)^2+3\left(x+2\right)^2+4\left(x+3\right)^2\)
\(=x^2+x^2+1+3x^2+4+4x^2+9\)
\(=x^2+x^2+1+3x^2+3+4x^2+9+1\)
\(=2x^2+1+3x^2+3+4x^2+9+1\)
Từ đây ghép x vào rồi tính nốt đẳng thức thôi nhé
2:
-8x^6-12x^4y-6x^2y^2-y^3
=-(8x^6+12x^4y+6x^2y^2+y^3)
=-(2x^2+y)^3
3:
=(1/3)^2-(2x-y)^2
=(1/3-2x+y)(1/3+2x-y)
\(\left(x^2+2x-1\right)^2\)
\(=\left(x^2+2x\right)^2-2\left(x^2+2x\right)+1\)
\(=x^4+4x^3-2x^2+4x^2+4x+1\)
\(=x^4+4x^3+2x^2+4x+1\)