Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mik vẽ hình thấy sai thì phải. Góc ACB , không phải góc ABC
a)Xét tam giác ABC. có : góc A2+góc B+ góc C1=180 độ ( địh lí tổng 3 góc trg 1 tam giác) (1)
Mà góc B=góc A1(gt); góc C1=A3 (gt); A2 chung (2)
Từ (1) và (2) => A1+A2+A3=180
=> 3 điểm M;A;N thẳng hàng
b)Ta có : góc A3= C1 ( gt)
Mà 2 góc này ở vị trí so le trong
=> MN//BC (3)
Vì đườg thẳng D vuồng góc vs BC (4)
Từ (3) và (4)=> đườg thẳng D vuông góc vs MN
Vậy ...................
H�nh ?a gi�c TenDaGiac1: DaGiac[D, C, 4] ?o?n th?ng f: ?o?n th?ng [D, C] c?a H�nh ?a gi�c TenDaGiac1 ?o?n th?ng g: ?o?n th?ng [C, B] c?a H�nh ?a gi�c TenDaGiac1 ?o?n th?ng h: ?o?n th?ng [B, A] c?a H�nh ?a gi�c TenDaGiac1 ?o?n th?ng i: ?o?n th?ng [A, D] c?a H�nh ?a gi�c TenDaGiac1 ?o?n th?ng M_1: ?o?n th?ng [A, M] ?o?n th?ng l: ?o?n th?ng [A, N] ?o?n th?ng m: ?o?n th?ng [B, P] ?o?n th?ng n: ?o?n th?ng [A, P] ?o?n th?ng p: ?o?n th?ng [N, M] D = (-2.88, 3.14) D = (-2.88, 3.14) D = (-2.88, 3.14) C = (1.42, 3.12) C = (1.42, 3.12) C = (1.42, 3.12) ?i?m B: DaGiac[D, C, 4] ?i?m B: DaGiac[D, C, 4] ?i?m B: DaGiac[D, C, 4] ?i?m A: DaGiac[D, C, 4] ?i?m A: DaGiac[D, C, 4] ?i?m A: DaGiac[D, C, 4] ?i?m M: Giao ?i?m c?a j, f ?i?m M: Giao ?i?m c?a j, f ?i?m M: Giao ?i?m c?a j, f ?i?m N: Giao ?i?m c?a k, g ?i?m N: Giao ?i?m c?a k, g ?i?m N: Giao ?i?m c?a k, g ?i?m P: B ??i x?ng qua l ?i?m P: B ??i x?ng qua l ?i?m P: B ??i x?ng qua l ?i?m H: Giao ?i?m c?a l, m ?i?m H: Giao ?i?m c?a l, m ?i?m H: Giao ?i?m c?a l, m
a. Từ giả thiết ta suy ra AN là đường trung trực của BP.
Xét \(\Delta APN\) và \(\Delta ABN\) có:
AB = AP; AN chung; NP = NB. Vậy thì \(\Delta APN=\Delta ABN\left(c-c-c\right)\Rightarrow\widehat{APN}=\widehat{ABN}=90^o\left(1\right).\)
Lại có \(\widehat{BAN}=\widehat{PAN}=25^o\Rightarrow\widehat{MAP}=90^o-20^o-25^o-25^o=20^o=\widehat{DAM}\)
Và \(AD=AP\left(=AB\right)\). Vậy nên \(\Delta ADM=\Delta APM\left(c-g-c\right)\Rightarrow\widehat{APM}=\widehat{ADM}=90^o\left(2\right)\)
Từ (1) và (2) ta suy ta M, P, N thẳng hàng.
b. Ta thấy ngay \(\widehat{MAN}=\widehat{MAP}+\widehat{NAP}=20^o+25^o=45^o.\)
\(\widehat{AMP}=90^o-20^o=70^o;\widehat{ANP}=90^o-25^o=65^o.\)