Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ABH và tam giác ACH có:
AB = AC ( gt)
BH=HC ( H là trung điểm của BC)
Cạnh AH chung
=> tam giác AHB= tam giác AHC( c.c.c)
b) Vì tam giác AHB = tam giác AHC ( cm trên)
=> góc AHB = góc AHC ( 2 góc tương ứng )
Mà góc AHB + góc AHC = 180o( 2 góc kề bù)
=> góc AHB = góc AHC = 180o : 2= 90o
=> AH \(\perp\) BC ( câu c) mik đnag nghĩ)
a/ Xét tam giác BEM và tam giác CFM có:
Góc B=C(Tam giác ABC cân tại A)
Góc BEM=CFM(Tam giác ABC cân tại A)
BM=MC(Trung tuyến AM)
=> Tam giác BEM=tam giác CFM(ch-gn)
b/Gọi giao điểm của EF và AM là O.
Vì AM là trung tuyến của tam giác cân nên AM cũng là đường cao của tam giác cân ABC.
=> Góc AMB=AMC=90 độ.
Mà Góc EMB=FMC(góc tương ứng của tam giác EMB=tam giác FMC)
=> Góc EMO=FMO.
Xét tam giác EMO và tam giác FMO có:
EM=MF(cạnh tương ứng trong tam giác EMB= tam giác FMC)
Góc EMO=FMO(cmt)
MO chung
=> Tam giác EMO=tam giác FMO(c-g-c)
=> Góc EOM=FOM(góc tương ứng)=180 độ/2=90 độ
EO=OF(cạnh tương ứng)
=> AM là đường trung trực của EF.
c/ Vì AI=\(\frac{8}{3}\)cm nên AM có độ dài là: \(\frac{8}{3}:\frac{2}{3}=4\)cm(tính chất trọng tâm tam giác)
Áp dụng định lí Pytago vào tam giác vuông AMC, ta được:
AC2=AM2+MC2=42+MC2=52=25
=> MC=\(\sqrt{\left(5^2-4^2\right)}=3\)cm
Mà BM=MC(Trung tuyến AM)
=> BC=3+3=6cm
a. ta có : tam giác AHB vuông tại H nên
\(AH^2=AB^2-BH^2=12^2-7,2^2=9,6^2\) Vậy AH =9,6cm
b. Ta có : ABC phải tam giác vuông vì \(AB^2=BH.BC\)