K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2016

a/ Xét tam giác BEM và tam giác CFM có:

Góc B=C(Tam giác ABC cân tại A)

Góc BEM=CFM(Tam giác ABC cân tại A)

BM=MC(Trung tuyến AM)

=> Tam giác BEM=tam giác CFM(ch-gn)

b/Gọi giao điểm của EF và AM là O.

Vì AM là trung tuyến của tam giác cân nên AM cũng là đường cao của tam giác cân ABC.

=> Góc AMB=AMC=90 độ.

Mà Góc EMB=FMC(góc tương ứng của tam giác EMB=tam giác FMC)

=> Góc EMO=FMO.

Xét tam giác EMO và tam giác FMO có:

EM=MF(cạnh tương ứng trong tam giác EMB= tam giác FMC)

Góc EMO=FMO(cmt)

MO chung

=> Tam giác EMO=tam giác FMO(c-g-c)

=> Góc EOM=FOM(góc tương ứng)=180 độ/2=90 độ 

     EO=OF(cạnh tương ứng)

=> AM là đường trung trực của EF.

c/ Vì AI=\(\frac{8}{3}\)cm nên AM có độ dài là: \(\frac{8}{3}:\frac{2}{3}=4\)cm(tính chất trọng tâm tam giác)

Áp dụng định lí Pytago vào tam giác vuông AMC, ta được:

AC2=AM2+MC2=42+MC2=52=25

=> MC=\(\sqrt{\left(5^2-4^2\right)}=3\)cm

Mà BM=MC(Trung tuyến AM)

=> BC=3+3=6cm

13 tháng 5 2016

A B C M E F

28 tháng 3 2019

a, xét \(\Delta\)BEM và \(\Delta\)CFM có:

           \(\widehat{B}\)=\(\widehat{C}\)(gt)

           BM=CM(trung tuyến AM)

\(\Rightarrow\)\(\Delta\)BEM=\(\Delta\)CFM(CH-GN)

b,Ta có \(\Delta\)ABM=\(\Delta\)ACM(c.c.c)

\(\Rightarrow\)\(\widehat{BAM}\)=\(\widehat{CAM}\)

Gọi O là giao của AM và EF

xét tam giác OAE và tam giác OAF có:

              AO cạnh chung

             \(\widehat{OAE}\)=\(\widehat{OAF}\)(cmt)

     vì AB=AC mà EB=FC nên AE=AF

\(\Rightarrow\)tam giác OAE=tam giác OAF(c.g.c)

\(\Rightarrow\)\(\widehat{AOE}\)=\(\widehat{AOF}\)mà 2 góc này ở vị trí kề bù nên\(\widehat{AOE}\)=\(\widehat{AOF}\)=90 độ(1)

\(\Rightarrow\)OE=OF suy ra O là trung điểm EF(2)

từ (1) và (2) suy ra AM là đg trung trực của EF

c, vì \(\widehat{BAM}\)=\(\widehat{CAM}\)=> AM là p/g của \(\widehat{BAC}\)(1)

ta có tam giác BAM=tam giác CAM(c.g.c)

=> AD là p/g của góc BAC(2)

từ (1) và(2) suy ra AM và AD trùng nhau nên A,M,D thẳng hàng

                

28 tháng 3 2019

a, Ta có : Tam giác ABC cân tại A => Góc B=Góc C

Xét tam giác BEM vuông tại E và tam giác CFM vuông tại F

BM=CM (BM là trung tuyến)

Góc B=Góc C

=> Tam giác BEM=Tam giác CFM(ch-gn)

b,Từ a, \(\Delta\)BEM=\(\Delta CFM\)=> ME=MF (1);BE=FC

Mà AB=AC=> AE=AF(2)

Từ 1 và 2 => AM là trung trực của EF

13 tháng 2 2018

cứ tra mạng là có ngay ak

t nghĩ chắc là cs đây !!

a: Xét ΔEBM vuông tại E và ΔFCM vuông tại F có

MB=MC

góc B=góc C

=>ΔEBM=ΔFCM

b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

ME=MF

=>ΔAEM=ΔAFM

=>AE=AF

mà ME=MF

nên AM là trung trực của EF
c: Xét ΔABC có AE/AB=AF/AC

nên EF//BC

d: Xet ΔABD vuông tại B và ΔACD vuông tại C có

AD chung

AB=AC

=>ΔABD=ΔACD
=>BD=CD
=>D nằm trên trung trực của BC

=>A,M,D thẳng hàng