Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(y^3=\left(x-2\right)^4-x^4\)
\(\Leftrightarrow y^3=-8\left(x-1\right)\left(x^2-2x+2\right)\)
\(\Rightarrow\)y là số chẵn
Đặt \(y=-2k\left(k\in Z\right)\)
\(\Rightarrow-8k^3=-8\left(x-1\right)\left(x^2-2x+2\right)\)
\(\Leftrightarrow k^3=\left(x-1\right)\left(x^2-2x+2\right)\)
Đễ dàng chứng minh được \(\left(x-1\right);\left(x^2-2x+2\right)\) nguyên tố cùng nhau
\(\Rightarrow\hept{\begin{cases}x-1=m^3\\x^2-2x+2=n^3\end{cases}}\)
\(\Rightarrow n^3=m^6+1\)
Ta lại có: \(m^6< m^6+1\le\left(m^2+1\right)^3\)
\(\Rightarrow m^6+1=\left(m^2+1\right)^3\)
\(\Leftrightarrow m^2\left(m^2+1\right)=0\)
\(\Leftrightarrow m=0\)
\(\Rightarrow\hept{\begin{cases}x=1\\y=0\end{cases}}\)
a) Ta có: \(A=\left|2x-2\right|+\left|2x-2013\right|=\left|2x-2\right|+\left|2013-2x\right|\ge\left|2x-2+2013-2x\right|=2011\)
Dấu "=" xảy ra khi: \(1\le x\le\frac{2013}{2}\)
b) Không mất tính tổng quát giả sử: \(x\ge y\ge z>0\) ta có: \(x+y+z\le x+x+x=3x\Leftrightarrow xyz\le3x\Leftrightarrow yz\le3\)
Vì \(x;y;z\) là số nguyên dương nên: \(yz\in\left\{1;2;3\right\}\)
Với \(yz=1\Leftrightarrow y=z=1\Leftrightarrow x+2=x\left(l\right)\)
Với \(yz=2\Leftrightarrow y=2;z=1\left(y\ge z\right)\Leftrightarrow x=3\)
Với \(yz=3\Leftrightarrow y=3;z=1\left(y\ge z\right)\Leftrightarrow x=2\)
Vậy: \(x;y;z\) là hoán vị của 1;2;3 hay:
\(\left(x;y;z\right)=\left\{3;2;1\right\};\left(3;1;2\right);\left(2;1;3\right);\left(2;3;1\right);\left(1;2;3\right);\left(1;3;2\right)\)
Tìm các số(nghiệm) x , y , z trong phương trình sau :
\(x^{2016}+\left|y-2015\right|+\sqrt{z^2+4}=2\)
Có: \(z^2\ge0\forall z\Rightarrow z^2+4\ge4\forall z\Rightarrow\sqrt{z^2+4}\ge\sqrt{4}=2\forall z\)
Mà \(x^{2016}+\left|y-2015\right|+\sqrt{z^2+4}=2\)
\(\Rightarrow\sqrt{z^2+4}=2\)\(\Rightarrow z^2+4=4\Rightarrow z^2=0\Rightarrow z=0\)
Lúc này ta có: x2016 + |y - 2015| = 0
Mà \(x^{2016}\ge0;\left|y-2015\right|\ge0\forall x;y\)
nên \(\begin{cases}x^{2016}=0\\\left|y-2015\right|=0\end{cases}\)\(\Rightarrow\begin{cases}x=0\\y-2015=0\end{cases}\)\(\Rightarrow\begin{cases}x=0\\y=2015\end{cases}\)
Vậy phương trình trên có nghiệm x = 0; y = 2015; z = 0
Vì 105 là số nguyên lẻ nên 2x+5y+1 và 2020lxl+y+x2+x là số lẻ
=> 5y chẵn => y chẵn
Có:x2+x=x(x+1) là số chẵn nên 2020lxl lẻ
=>x=0
Thay x=0 vào phương trình (2x+5y+1)(2020lxl+y+x2+x)=105 ta được:
\(\left(5y+1\right)\left(y+1\right)=105\Leftrightarrow5y^2+6y-104=0\)
Do \(y\in Z\)nên ta tìm ra y=4
Vậy phương trình có nghiệm là \(\left(x;y\right)=\left(0;4\right)\)
Vì \(x^2+3^y=35\)nên \(3^y< 35\)
Vì \(3^3=27\),\(3^4=108>35\)
\(\Rightarrow y\in(1;2;3)\)
Nếu y=1 thì\(x^2+3^1=35\Rightarrow x^2=35-3=32\)
Nhưng không có bình phương nào bằng 32 \(\Rightarrow\)\(y\ne1\)
Nếu y=2 thì\(x^2+3^2=35\Rightarrow x^2=35-9=26\)
Nhưng không có bình phương nào bằng 26 \(\Rightarrow y\ne2\)
Nếu y=3 thì\(x^2+3^3=35\Rightarrow x^2=35-27=8\)
Nhưng không có bình phương nào bằng 8 \(\Rightarrow y\ne3\)
Vậy không có x,y để thỏa mãn điều kiện của đề bài.
\(VD3,\sqrt{x+\sqrt{x}}=y\left(x\ge0\right)\)
\(\Leftrightarrow\hept{\begin{cases}y\ge0\\x+\sqrt{x}=y^2\end{cases}}\)
Dễ thấy x phải là số chính phương
Đặt \(x=a^2\left(a\in N\right)\)
\(\Rightarrow a^2+a=y^2\)
\(\Leftrightarrow a\left(a+1\right)=y^2\)
Vì VP là số chính phương nên \(a\left(a+1\right)\)là số chính phương
Mà a và a + 1 là 2 số tự nhiên liên tiếp và a < a + 1
Nên a = 0 (tích 2 số nguyên liên tiếp là 1 scp thì phải có 1 số bằng 0 mà a < a + 1 nên a = 0)
Khi đó x = 0 ; y = 0
Vậy pt có nghiệm nguyên (x;y)=(0;0)
VD1
<=> \(\left(\frac{3}{5}\right)^x+\left(\frac{4}{5}\right)^x=1\)
+ \(x=0;1\)không thỏa mãn
+ \(x=2\)=> \(\left(\frac{3}{5}\right)^2+\left(\frac{4}{5}\right)^2=1\)đúng
+ \(x>2\)
=> \(\left(\frac{3}{5}\right)^x< \left(\frac{3}{5}\right)^2,\left(\frac{4}{5}\right)^x< \left(\frac{4}{5}\right)^2\)
=> \(VT< 1\)(loại)
Vậy x=2