K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2019

Vì \(x^2+3^y=35\)nên \(3^y< 35\)

Vì \(3^3=27\),\(3^4=108>35\)

\(\Rightarrow y\in(1;2;3)\)

Nếu y=1 thì\(x^2+3^1=35\Rightarrow x^2=35-3=32\)

Nhưng không có bình phương nào bằng 32 \(\Rightarrow\)\(y\ne1\)

Nếu y=2 thì\(x^2+3^2=35\Rightarrow x^2=35-9=26\)

Nhưng không có bình phương nào bằng 26 \(\Rightarrow y\ne2\)

Nếu y=3 thì\(x^2+3^3=35\Rightarrow x^2=35-27=8\)

Nhưng không có bình phương nào bằng 8 \(\Rightarrow y\ne3\)

Vậy không có x,y để thỏa mãn điều  kiện của đề bài.

6 tháng 3 2020

để mị nói cho mà nge

Ta có:Nếu y>0 thì 3^y chia hết cho 3,mà 35 chia 3 dư 2 nên vế phải chia 3 dư 2

Mà vế trái là số chính phương nên vế trái chỉ chia 3 dư 1 hoặc 0

Suy ra mâu thuẫn

Do đó y<=0,mà y là số nguyên ko âm nên y=0

Suy ra x=6

20 tháng 3 2018

a) Ta có: \(|\frac{1}{2}x-3y+1|\ge0\)    và   \(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\)

=> \(|\frac{1}{2}x-3y+1|=-\left(x-1\right)^2=0\)

=> x-1=0

=> x=1

\(|\frac{1}{2}x-3y+1|=0\)

=> \(\frac{1}{2}.1-3y+1=0\)

=> \(\frac{1}{2}-3y=-1\)

=> \(3y=\frac{1}{2}-\left(-1\right)\)

=>\(3y=\frac{1}{2}+1=\frac{3}{2}\)

=> \(y=\frac{3}{2}:3=\frac{3}{2}.\frac{1}{3}=\frac{1}{2}\)

b) Có: \(x^2\le y;y^2\le z;z\le x\)

=> \(x^4\le y^2\) và \(y^2\le x\)

=> \(x^4\le x\)

=> \(x^4=x\)

=> \(x\in\left\{0;1\right\}\)

Có: \(x^4\le y^2\)\(y^2\le z\)và \(z\le x\)

=> \(x^4\le z\le x\)

Mà \(x^4=x\)

=> \(x^4=x=z\)

=> \(z\in\left\{0;1\right\}\)

Có: \(x^4\le y^2\)và \(y^2\le z\)

=> \(x^4\le y^2\le z\)

Mà \(x^4=x=z\)

=> \(x^4=y^2\)

=> \(y^2\in\left\{0;1\right\}\)

=> \(y\in\left\{0;1\right\}\)

c)=> \(z=\frac{8-x}{3}\)và \(y=\frac{9-2}{2}\)

=> \(x+y+z=x+\frac{9-x}{2}+\frac{8-x}{3}=\frac{6x}{6}+\frac{27-3x}{6}+\frac{16-2x}{6}=\frac{6x+27-3x+16-2x}{6}\)

\(=\frac{x+43}{6}\)

..........Chỗ này?! Có gì đó sai sai.........

Mình nghĩ là \(x;y;z\in N\)thì mới đúng, chứ không âm thì nó có thể làm số thập phân...........Bạn xem lại cái đề đi

d) => \(a^2bc=-4;ab^2c=2;abc^2=-2\)

=> \(ab^2c+abc^2=2+\left(-2\right)=0\)

=> \(abc\left(b+c\right)=0\)

Mà a;b;c là 3 số khác 0

=> \(abc\ne0\)

=> \(b+c=0\)

=> \(b=-c\)

\(a^2bc+ab^2c-abc^2=-4+2-\left(-2\right)=0\)

=> \(abc\left(a+b-c\right)=0\)

\(abc\ne0\)

=> \(a+b-c=0\)

\(a^2bc-abc^2=-4-\left(-2\right)=-2\)

=> \(abc\left(a-c\right)=-2\)

Mà \(abc\ne0\)

=>\(a-c=-2\)

Có \(a+b-c=0\)

=> \(\left(a-c\right)+b=0\)

=> \(-2+b=0\)

=> \(b=2\)

 \(b=-c=2\)=> \(c=-2\)

=> \(a-\left(-2\right)=-2\)

=> \(a+2=-2\)

=> \(a=-2-2=-4\).....................Mình cũng thấy cái này lạ lạ à nha....... Bạn mò thử đi, chắc ra  -__-

Mỏi tay quáááá

9 tháng 4 2019

\(x^2=3^y+35\)
Với \(y=0\) ta có: \(x^2=36\Rightarrow x=6\left(x\ge0\right)\)

Với \(y>0\) ta có: \(3^y⋮3\Rightarrow3^y+33+2\) chia 3 dư 2

\(\Rightarrow x^2=3k+2\).Mà số chính phg ko có dạng 3k+2 

Vậy pt có nghiệm (x;y)=(6;0)

10 tháng 4 2019

cảm ơn bạn nha

17 tháng 6 2019

\(VD3,\sqrt{x+\sqrt{x}}=y\left(x\ge0\right)\)

\(\Leftrightarrow\hept{\begin{cases}y\ge0\\x+\sqrt{x}=y^2\end{cases}}\)

Dễ thấy x phải là số chính phương

Đặt \(x=a^2\left(a\in N\right)\)

\(\Rightarrow a^2+a=y^2\)

\(\Leftrightarrow a\left(a+1\right)=y^2\)

Vì VP là số chính phương nên \(a\left(a+1\right)\)là số chính phương

Mà a và a + 1 là 2 số tự nhiên liên tiếp và a < a + 1

Nên a = 0 (tích 2 số nguyên liên tiếp là 1 scp thì phải có 1 số bằng 0 mà a < a + 1 nên a = 0)

Khi đó x = 0 ; y = 0

Vậy pt có nghiệm nguyên (x;y)=(0;0)

17 tháng 6 2019

VD1

<=> \(\left(\frac{3}{5}\right)^x+\left(\frac{4}{5}\right)^x=1\)

\(x=0;1\)không thỏa mãn

+  \(x=2\)=> \(\left(\frac{3}{5}\right)^2+\left(\frac{4}{5}\right)^2=1\)đúng

+  \(x>2\)

=> \(\left(\frac{3}{5}\right)^x< \left(\frac{3}{5}\right)^2,\left(\frac{4}{5}\right)^x< \left(\frac{4}{5}\right)^2\)

=> \(VT< 1\)(loại)

Vậy x=2

1 tháng 5 2020

Vì tổng là số lẻ nên cả 3 số hạng đều lẻ hoặc 1 lẻ, 1 chẵn

TH1: Cả 3 số hạng đều lẻ

=> x-y lẻ => x và y khác tính chẵn lẻ

y-z lẻ => y và z khác tính chẵn lẻ

x-z lẻ => z và x khác tính chẵn lẻ

=> x,y,z khác tính chẵn lẻ với nhau

Trong khi đó chỉ có 2 loại là chẵn và lẻ, không có loại thứ 3

TH2: 2 chẵn, 1 lẻ

Giả sử (x-y)3 chẵn, (y-z)3 chẵn; 5|z-x| lẻ

=> x-y chẵn => x;y cùng tính chẵn lẻ (1)

y-z chẵn => y;z cùng tính chẵn lẻ (2)

x-z lẻ => x;z cùng tính chẵn lẻ (3)

Từ (1)(2)(3) => x,z cùng tính chẵn lẻ, mâu thuẫn với (3)

TH (x-y)3 lẻ và (y-z)2 lẻ cho kết quả tương tự

Vậy không có x,y,z nguyên thỏa mãn bài toán

1 tháng 5 2020

\(Vì tổng là số lẻ nên cả 3 số hạng đều lẻ hoặc 1 lẻ, 1 chẵn TH1: Cả 3 số hạng đều lẻ => x-y lẻ => x và y khác tính chẵn lẻ y-z lẻ => y và z khác tính chẵn lẻ x-z lẻ => z và x khác tính chẵn lẻ => x,y,z khác tính chẵn lẻ với nhau Trong khi đó chỉ có 2 loại là chẵn và lẻ, không có loại thứ 3 TH2: 2 chẵn, 1 lẻ Giả sử (x-y)3 chẵn, (y-z)3 chẵn; 5|z-x| lẻ => x-y chẵn => x;y cùng tính chẵn lẻ (1) y-z chẵn => y;z cùng tính chẵn lẻ (2) x-z lẻ => x;z cùng tính chẵn lẻ (3) Từ (1)(2)(3) => x,z cùng tính chẵn lẻ, mâu thuẫn với (3) TH (x-y)3 lẻ và (y-z)2 lẻ cho kết quả tương tự Vậy không có x,y,z nguyên thỏa mãn bài toán\)

9 tháng 10 2018

Ta có: \(\left(\left|x-3\right|+2\right)^2\ge0\forall x\) không âm

\(\left|y+3\right|\ge3\forall y\) không âm

Cộng theo vế 2 BĐT trên ta có:

\(A=\left(\left|x-3\right|+2\right)^2+\left|y+3\right|+2018\ge0+3+2018=2021\)

Vậy \(A_{min}=2021\Leftrightarrow\hept{\begin{cases}\left(\left|x-3\right|+2\right)^2=0\\\left|y+3\right|=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=0\end{cases}}}\)