Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,ta co : \(2\left(x+1\right)=3\left(4x-1\right)\)
\(< =>2x+2=12x-3\)
\(< =>10x=5\)\(< =>x=\frac{1}{2}\)
khi do : \(P=\frac{2x+1}{2x+5}=\frac{1+1}{1+5}=\frac{2}{6}=\frac{1}{3}\)
b, ta co : \(\left(x-5\right)\left(y^2-9\right)=0\)
\(< =>\orbr{\begin{cases}x-5=0\\y^2-9=0\end{cases}}\)
\(< =>\orbr{\begin{cases}x=5\\y=\pm3\end{cases}}\)
xong nhe
Cái này thì EZ mà sư phụ : ]
a) 2(x+1) = 3(4x-1)
=> 2x + 2 = 12x - 3
=> 2x - 12x = -3 - 2
=> -10x = -5
=> x = 1/2
Thay x = 1/2 vào P ta được : \(\frac{2\cdot\frac{1}{2}+1}{2\cdot\frac{1}{2}+5}=\frac{1+1}{1+5}=\frac{2}{6}=\frac{1}{3}\)
b) \(A=\left(x-5\right)\left(y^2-9\right)=0\)
=> \(\orbr{\begin{cases}x-5=0\\y^2-9=0\end{cases}}\)
\(x-5=0\Rightarrow x=5\)
\(y^2-9=0\Rightarrow y^2=9\Rightarrow\orbr{\begin{cases}y=3\\y=-3\end{cases}}\)
Vậy ta có các cặp x, y thỏa mãn : ( 5 ; 3 ) ; ( 5 ; -3 )
Bài 1:
|\(x\)| = 1 ⇒ \(x\) \(\in\) {-\(\dfrac{1}{3}\); \(\dfrac{1}{3}\)}
A(-1) = 2(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)) + 5
A(-1) = \(\dfrac{2}{9}\) + 1 + 5
A (-1) = \(\dfrac{56}{9}\)
A(1) = 2.(\(\dfrac{1}{3}\) )2- \(\dfrac{1}{3}\).3 + 5
A(1) = \(\dfrac{2}{9}\) - 1 + 5
A(1) = \(\dfrac{38}{9}\)
|y| = 1 ⇒ y \(\in\) {-1; 1}
⇒ (\(x;y\)) = (-\(\dfrac{1}{3}\); -1); (-\(\dfrac{1}{3}\); 1); (\(\dfrac{1}{3};-1\)); (\(\dfrac{1}{3};1\))
B(-\(\dfrac{1}{3}\);-1) = 2.(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)).(-1) + (-1)2
B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) - 1 + 1
B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\)
B(-\(\dfrac{1}{3}\); 1) = 2.(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)).1 + 12
B(-\(\dfrac{1}{3};1\)) = \(\dfrac{2}{9}\) + 1 + 1
B(-\(\dfrac{1}{3}\); 1) = \(\dfrac{20}{9}\)
B(\(\dfrac{1}{3};-1\)) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).(-1) + (-1)2
B(\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) + 1 + 1
B(\(\dfrac{1}{3}\); -1) = \(\dfrac{20}{9}\)
B(\(\dfrac{1}{3}\); 1) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).1 + (1)2
B(\(\dfrac{1}{3}\); 1) = \(\dfrac{2}{9}\) - 1 + 1
B(\(\dfrac{1}{3}\);1) = \(\dfrac{2}{9}\)
Để tính giá trị một biểu thức đại số tại những gí trị cho trước của biến ta chỉ việc thay giá trị của biến và biểu thức đại số đó rồi tính
Áp dụng: \(2x^3-3y\) tại x=2, y=1
\(=2.2^3-3.1=2.8-3=16-3=13\)
\(D=\left|2x+2,5\right|+\left|2x-3\right|=\left|2x+2,5\right|+\left|3-2x\right|\ge\left|2x+2,5+3-2x\right|=5,5\)
Vậy GTNN của D là 5,5 khi \(\begin{cases}2x+2,5\ge0\\3-2x\ge0\end{cases}\)\(\begin{cases}x\ge-\frac{5}{4}\\x\le\frac{3}{2}\end{cases}\)\(\Leftrightarrow-\frac{5}{4}\le x\le\frac{3}{2}\)
Mà x nguyên nên \(x\in\left\{-1;0;1\right\}\)
x2 + 4x = x . ( x + 4 )
để A > 0
\(\Rightarrow\orbr{\begin{cases}x\text{ và }x+4\text{ cùng dương}\\x\text{ và }x+4\text{ cùng âm}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x>0\\x+4< 0\end{cases}\Rightarrow\orbr{\begin{cases}x>0\\x< -4\end{cases}\Rightarrow}0< x< -4}\)
X không tồn tại
a)\(\sqrt{0,01}-\sqrt{0,25}\)
=\(\sqrt{\left(0,1\right)^2}-\sqrt{\left(0,5\right)^2}\)
= 0,1 - 0,5 = - 0,4
b)\(0,5.\sqrt{100}-\sqrt{\dfrac{1}{4}}\)
=0,5.\(\sqrt{10^2}-\sqrt{\left(\dfrac{1}{2}\right)^2}\)
=0,5.10−\(\dfrac{1}{2}\)
= 5 - 0,5
= 4,5.
a) 0,1 - 0,5 = -0,4
b)0,5 . 10 - 0,5 = 5 - 0,5 = 4,5
thầy thông cảm máy em không có dấu căn.
E\(=5,5.\left(-1,6\right)\)=-8,8
\(E=5,5.2-5,5.3,6\)=11-19,8=-8,8
F= -3,1.(-2,7)=8,37
F=-3,1.3+3,1.5,7=-9,3+17,67=8,37
C1:E=5,5.(2-3,6)
E=5,5.(-1,6)
E=-8,8
C2:E=5,5(2-3,6)
E=5,5.2-5,5.3,6
E=11-19,8
E=-8,8
C1:F=-3,1(3-5,7)
F=-3,1.(-2,7)
F=8,37
C2:F=-3,1(3-5,7)
F=-3,1.3-(-3,1).5,7
F=-9,3-(-17,67)
F=-9,3+17,67
F=8,37