Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : A = x2 - 4x
=> A = x(x - 4)
Để A nguyên dương thì x > 0 và x - 4 > 0
Vậy x > 4 thì A nhận giá trị dương
a) Dễ thấy \(x^2\)luôn dương vậy để A dương thì \(4x\ge0\)
\(\Leftrightarrow x\ge0\)
b) \(B=\left(x-3\right)\left(x+7\right)\)dương khi :
TH1: \(\hept{\begin{cases}x-3>0\\x+7>0\end{cases}\Rightarrow\hept{\begin{cases}x>3\\x>-7\end{cases}\Rightarrow}x>3}\)
TH2: \(\hept{\begin{cases}x-3< 0\\x+7< 0\end{cases}\Rightarrow\hept{\begin{cases}x< 3\\x< -7\end{cases}\Rightarrow}x< -7}\)
c) Tương tự câu b)
a) Ta có ; \(x^2\ge0\forall x\in R\)
Nên A dương khi 4x \(\ge0\forall x\in R\)
=> \(x\ge0\)
Vậy A dương khi \(x\ge0\)
\(x^2+x=x\left(x+1\right)\)
\(x\left(x+1\right)\)dương \(\Leftrightarrow\)\(x>0\) Hoặc \(x<0\)
và và
\(x+1>0\) \(x+1<0\)
\(\Leftrightarrow\) \(x>0\) Hoặc \(x<0\)
và và
\(x>-1\) \(x<-1\)
\(\Leftrightarrow\)\(x>0\) hoặc \(x<-1\)
\(1.\frac{x-7}{2}< 0\)
\(\Leftrightarrow\frac{x-7}{2}.2< 0.2\)
\(\Leftrightarrow x-7< 0\Leftrightarrow x< 7\)
\(S=\left\{xlx< 7\right\}\)
2)\(\)Đề biểu thức sau nhân giá trị âm thì :
\(\frac{x+3}{x-5}< 0\Leftrightarrow x+3< 0\Leftrightarrow x< 3\left(Đk:x\ne5\right)\)
\(S=\left\{xlx< 3\right\}\)
3.Giá trị của x thuộc Z để biểu thức sau nhận giá trị dương:
\(x^2+x\ge0\)
\(\Leftrightarrow x\left(x+1\right)\ge0\)
\(\Leftrightarrow\orbr{\begin{cases}x\ge0\\x+1\ge0\end{cases}\Leftrightarrow\orbr{\begin{cases}x\ge0\\x\ge-1\end{cases}}}\)
\(S=\left\{xlx\ge-1\right\}\)
a,ta co : \(2\left(x+1\right)=3\left(4x-1\right)\)
\(< =>2x+2=12x-3\)
\(< =>10x=5\)\(< =>x=\frac{1}{2}\)
khi do : \(P=\frac{2x+1}{2x+5}=\frac{1+1}{1+5}=\frac{2}{6}=\frac{1}{3}\)
b, ta co : \(\left(x-5\right)\left(y^2-9\right)=0\)
\(< =>\orbr{\begin{cases}x-5=0\\y^2-9=0\end{cases}}\)
\(< =>\orbr{\begin{cases}x=5\\y=\pm3\end{cases}}\)
xong nhe
Cái này thì EZ mà sư phụ : ]
a) 2(x+1) = 3(4x-1)
=> 2x + 2 = 12x - 3
=> 2x - 12x = -3 - 2
=> -10x = -5
=> x = 1/2
Thay x = 1/2 vào P ta được : \(\frac{2\cdot\frac{1}{2}+1}{2\cdot\frac{1}{2}+5}=\frac{1+1}{1+5}=\frac{2}{6}=\frac{1}{3}\)
b) \(A=\left(x-5\right)\left(y^2-9\right)=0\)
=> \(\orbr{\begin{cases}x-5=0\\y^2-9=0\end{cases}}\)
\(x-5=0\Rightarrow x=5\)
\(y^2-9=0\Rightarrow y^2=9\Rightarrow\orbr{\begin{cases}y=3\\y=-3\end{cases}}\)
Vậy ta có các cặp x, y thỏa mãn : ( 5 ; 3 ) ; ( 5 ; -3 )
x2 + 4x = x . ( x + 4 )
để A > 0
\(\Rightarrow\orbr{\begin{cases}x\text{ và }x+4\text{ cùng dương}\\x\text{ và }x+4\text{ cùng âm}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x>0\\x+4< 0\end{cases}\Rightarrow\orbr{\begin{cases}x>0\\x< -4\end{cases}\Rightarrow}0< x< -4}\)
X không tồn tại
nhầm vứt cái x không tồn tại nha