K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2016

h) \(8< 2^n\le2^9.2^{-5}\Leftrightarrow2^3< 2^n\le2^4\) \(\Rightarrow3< n\le4\)

Vì n là số tự nhiên nên n = 4

k) \(27< 81^3:3^n< 243\Leftrightarrow3^3< 3^{12-n}< 3^5\Rightarrow3< 12-n< 5\Leftrightarrow7< n< 9\)

Vì n là số tự nhiên nên n = 8

l) \(\left(5n+1\right)^2=\frac{36}{49}\Leftrightarrow\left(5n+1\right)^2=\left(\frac{6}{7}\right)^2\Rightarrow5n+1=\frac{6}{7}\) (vì n là số  tự nhiên)

=> n = -1/35 (không tm)

m) \(\left(n-\frac{2}{9}\right)^3=\left(\frac{2}{3}\right)^6\Leftrightarrow\left(n-\frac{2}{9}\right)^3=\left(\frac{4}{9}\right)^3\Rightarrow n-\frac{2}{9}=\frac{4}{9}\Leftrightarrow n=\frac{2}{3}\left(ktm\right)\)

n) \(\left(8n-1\right)^{2m+1}=5^{2m+1}\Leftrightarrow8n-1=5\Leftrightarrow n=\frac{3}{4}\left(ktm\right)\) (cần thêm đk của m)

15 tháng 8 2016

h)

\(8< 2^2\le2^9.2^{-5}\)

\(\Rightarrow2^3< 2^n\le2^4\)

\(\Rightarrow2^n=2^4\Rightarrow n=4\)

 

 

 

a: \(\Leftrightarrow2^5\ge2^n>2^2\)

=>2<n<=5

hay \(n\in\left\{3;4;5\right\}\)

b: \(\Leftrightarrow3^2\cdot3^3\le3^n\le3^5\)

=>5<=n<=5

=>n=5

25 tháng 11 2017

a,Ta có \(16<2^n\le2^3.32\)

<=>\(2^4<2^n\le2^3,2^5\)

<=> \(2^4<2^n\le2^8\)

<=> \(4 < n \le 8\)

=> \(n \in{5,6,7,8}\)

b, \(25<5^n<625\)

<=>\(5^2 < 5^n<5^4\)

<=> 2<n<4

=> n=3

1 tháng 11 2016

a) 3^1=3

3^4=81

3^5=243

vậy n=1 đến 5

b)2^(2n-3).2^(8-2n)=2^[2n-3+(8-2n)]=2^(2n-3+8-2n)=2^5

16=2^4<2^n<2^5

n= không có

1 tháng 11 2016

A! Bạn ơi! Bạn có thể giải thích câu a đc hong. Mình không hiểu cho lắm...

19 tháng 6 2016

xét với mọi n thuộc N thì A:2 vì vậy ta cần tìm n để n:3n 
xét để A: 3 thì n không có dạng 3k+2 để A:3(k thuộc N) 
A=n^2+11n+30 
để A:n thì n thuộc ước 30 mà ước thuộc N của 30 là 
1,2,3,5,6,10,15,30 
trong đó 2,5 có dạng 3k+2 nên ta loại 
vậy n là 1,3,6,10,15,30

19 tháng 6 2016

câu 2: 

Giả sử f(x)=ax2+bx+cf(x)=ax2+bx+c (do đề bài cho là đa thức bậc hai)
Suy ra

f(x)f(x1)=ax2+bx+ca(x1)2b(x1)c=2ax+a+bf(x)−f(x−1)=ax2+bx+c−a(x−1)2−b(x−1)−c=2ax+a+b

Mà f(x)f(x1)=xf(x)−f(x−1)=x

2ax+a+b=x⇒2ax+a+b=x

Do đó a+b=0a+b=0 và a=1/2a=1/2 từ đó ta suy ra a=1/2;b=1/2a=1/2;b=−1/2

Do đó f(x)=\(\frac{x^2}{2}-\frac{x}{2}+c\)

f(n)=1+2+3+...+nf(n)=1+2+3+...+n

Áp dụng điều ta vừa chứng minh được thì:
f(1)f(0)=1f(1)−f(0)=1

f(2)f(1)=2f(2)−f(1)=2

....

f(n)f(n1)=nf(n)−f(n−1)=n

Do đó

1+2+...+n=f(1)f(0)+f(2)f(1)+...+f(n)f(n1)=f(n)f(0)=\(\frac{n^2}{2}-\frac{n}{2}\)=\(\frac{n\left(n-1\right)}{2}\)

17 tháng 6 2016

Bài 1 :

a) x < 0

b) x > 0

c) <=> 3 + |3x - 1| = 5

<=> |3x - 1| = 5 - 3 = 2

<=> 3x - 1 = 2 hoặc -3x + 1 = 2

<=> 3 x = 3 hoặc -3x = 1

<=> x = 1 hoặc x = -1/3

17 tháng 6 2016

Bài 2 :

a) 27 = 33 < 3n < 243 = 35

<=> 3 < n < 5

Vì n thuộc N* nên n thuộc {4; 5}

b) 32 = 25 < 2n < 128 = 27

<=> 5 < n < 7. Vì n thuộc N* nên n = 6

c) 125 = 5 . 25 = 5 . 52 < 5.5n < 5 . 125 = 5 . 53

<=> 2 < n < 3. Vì n thuộc N* nên n = 3

3 tháng 2 2017

291=(213)7=81927

535=(55)7=31257

mà 8192>3125=>81927>31257

=>291>535

k nha