Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/
a, \(4x^2+36xy+81y^2=\left(2x+9y\right)^2\)
b, \(12y+\frac{9}{100}y^2+400=\left(\frac{3}{10}y+20\right)^2\)
2/
\(2bc+b^2+c^2-a^2=\left(b+c\right)^2-a^2=\left(a+b+c\right)\left(b+c-a\right)=2p\left(b+c-a\right)\) (1)
Ta có: a+b+c=2p => b+c=2p-a (2)
Thay (2) và (1) ta có:
\(2p\left(2p-a-a\right)=2p\left(2p-2a\right)=4p\left(p-a\right)\) (đpcm)
3/
Gọi 2 số tự nhiên chẵn là 2k và 2k+2 (k thuộc N)
Theo bài ra ta có: \(\left(2k+2\right)^2-\left(2k\right)^2=36\)
=> \(\left(2k+2-2k\right)\left(2k+2+2k\right)=36\)
=>\(2\left(4k+2\right)=36\)
=>\(8k+4=36\)
=>\(8k=32\)
=> k = 4
=> \(2k=8;2k+2=10\)
Vậy...
a/x +b/y +c/z =0 ->ayz+bxz+cxz=0
x/a + y/b + z/c=1 ->(x/a +y/b +z/c)^2=1
x^2/a^2 + y^2/b^2 + z^2/c^2 +2(xy/ab +yz/bc +xz/ac)=1
x^2/a^2 + y^2/b^2 + z^2/c^2 =1- 2* ayz+bxz+cxz/abc=1-2*0=1-0=1 =>ĐPCM
k hộ mik nha
#)Giải :
\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\rightarrow ayz+bxz+cxy=0\)
\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\rightarrow\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\)
\(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\)
\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1-2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{xz}{ac}\right)=1-2\frac{ayz+bxz+cxy}{abc}=1-2.0=1\left(đpcm\right)\)
#~Will~be~Pens~#
\(a^2-2a+b^2+4b+4c^2-4c+6=0\)'
\(\left(a^2-2a+1\right)+\left(b^2+4b+4\right)+\left(4c^2-4c+1\right)=0\)
\(\left(a-1\right)^2+\left(b+2\right)^2+\left(2c-1\right)^2=0\)
b tự làm nốt nhé~
\(M=\left(x+3\right)\left(x^2-3x+9\right)-\left(x^3+54-x\right)\)
\(M=x^3+3^3-x^3-54+x\)
\(M=x+27-54\)
\(M=x+27-54\)
\(M=7-27\)
\(M=-20\)