K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2020

Sử dụng kết hợp hai bất đẳng thức Cauchy-Schwarz và AM - GM, ta được: \(\left(ab+1\right)^2\le\left(a^2+1\right)\left(b^2+1\right)=\left(a.a.1+1\right)\left(b.b.1+1\right)\)\(\le\left(\frac{a^3+a^3+1}{3}+1\right)\left(\frac{b^3+b^3+1}{3}+1\right)=\frac{4}{9}\left(a^3+2\right)\left(b^3+2\right)\)\(\Rightarrow ab+1\le\frac{2}{3}\sqrt{\left(a^3+2\right)\left(b^3+2\right)}\Rightarrow\frac{a^3+2}{ab+1}\ge\frac{3}{2}\sqrt{\frac{a^3+2}{b^3+2}}\)(1)

Hoàn toàn tương tự: \(\frac{b^3+2}{bc+1}\ge\frac{3}{2}\sqrt{\frac{b^3+2}{c^3+2}}\)(2); \(\frac{c^3+2}{ca+1}\ge\frac{3}{2}\sqrt{\frac{c^3+2}{a^3+2}}\)(3)

Cộng theo vế của 3 BĐT (1), (2), (3), ta được: 

\(Q=\frac{a^3+2}{ab+1}+\frac{b^3+2}{bc+1}+\frac{c^3+2}{ca+1}\ge\)\(\frac{3}{2}\left(\sqrt{\frac{a^3+2}{b^3+2}}+\sqrt{\frac{b^3+2}{c^3+2}}+\sqrt{\frac{c^3+2}{a^3+2}}\right)\)

\(\ge\frac{3}{2}.\sqrt[3]{\sqrt{\frac{a^3+2}{b^3+2}}.\sqrt{\frac{b^3+2}{c^3+2}}.\sqrt{\frac{c^3+2}{a^3+2}}}=\frac{3}{2}\)(Áp dụng BĐT AM - GM)

Đẳng thức xảy ra khi a = b = c = 1

18 tháng 9 2015

Ta sử dụng hằng đẳng thức \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ca=\left(a^2+b^2+c^2\right)+2\left(ab+bc+ca\right).\)

Theo giả thiết \(a+b+c=9,a^2+b^2+c^2=53\to81=53+2\left(ab+bc+ca\right)\to\)

\(ab+bc+ca=\frac{81-53}{2}=\frac{28}{2}=14\to A=3\left(ab+bc+ca\right)=52.\)

2.  Ta có \(4x^2-12x-1=-10\to\left(2x\right)^2-2\cdot2x\cdot3+9=0\to\left(2x-3\right)^2=0\to2x-3=0\to x=\frac{3}{2}.\)

15 tháng 4 2020

giả sử P đạt GTNN khi a=x, b=y; c=z. khi đó ta có:

x,y,z>0 và 4x+3y+4z=22

ta thấy với a=x; b=y; c=z thì 

\(\frac{1}{3a}=\frac{1}{3x}=\frac{1}{3x^2};\frac{2}{b}=\frac{2}{y}=\frac{2}{y^2},\frac{3}{c}=\frac{3}{z}=\frac{3}{z^2}\)

do đó, các đánh giá sau sẽ đảm bảo được điều kiện đẳng thức

\(\hept{\begin{cases}\frac{1}{3a}+\frac{a}{3x^2}\ge2\sqrt{\frac{1}{3a}\cdot\frac{a}{3a^2}}=\frac{2}{3x}\\\frac{2}{b}+\frac{2b}{y^2}\ge2\sqrt{\frac{2}{b}\cdot\frac{2b}{y^2}}=\frac{4}{y}\\\frac{3}{c}+\frac{3c^2}{z}\ge2\sqrt{\frac{3}{c}\cdot\frac{3c}{z^2}}=\frac{6}{z}\end{cases}}\)

\(\Rightarrow\frac{1}{3a}\ge\frac{2}{3x}-\frac{a}{3x^2};\frac{2}{b}\ge\frac{4}{y}-\frac{2b}{y^2};\frac{3}{c}\ge\frac{6}{z}-\frac{3c}{z^2}\)

và như vậy, ta đã chuyển được các phân thức về dạng bậc nhất và thu được

\(P\ge a+b+c+\left(\frac{2}{3x}-\frac{a}{3x^2}\right)+\left(\frac{4}{y}-\frac{2b}{y^2}\right)+\left(\frac{6}{z}-\frac{3c}{z^2}\right)\)

\(=\left(1-\frac{1}{3x^2}\right)a+\left(1-\frac{2}{y^2}\right)b+\left(1-\frac{3}{z^2}\right)c+\frac{2}{3x}+\frac{4}{y}+\frac{6}{z}\)

vấn đề còn lại là ta phải chọn các số x,y,z thích hợp làm sao để có thể sử dụng được giả thiếu 4a+3b+4c=22

muốn vậy các hệ số của a,b,c trong đánh giá trên phải thành lập tỉ lệ 4:3:4 tức là

\(\frac{1-\frac{1}{3x^2}}{4}=\frac{1-\frac{1}{y^2}}{3}=\frac{1-\frac{3}{z^2}}{4}\)

vậy điểm rơi thực sự của bài toán chình là nghiệm của hệ phương trình \(\hept{\begin{cases}4x+3y+4z=22\\\frac{1-\frac{1}{3x^2}}{4}=\frac{1-\frac{2}{y^2}}{3}=\frac{1-\frac{3}{z^2}}{4}\end{cases}\left(1\right)}\)

giải hệ này ta tìm được x=1; y=2; z=3. khi đó ta có:

\(P\ge\left(1-\frac{1}{3}\right)a+\left(1-\frac{2}{2^2}\right)b+\left(1-\frac{3}{3^2}\right)c+\frac{2}{3}+\frac{4}{2}+\frac{6}{3}\)

\(=\frac{4a+3b+4c}{6}+\frac{14}{3}=\frac{22}{6}+\frac{14}{3}=\frac{25}{3}\)

đẳng thức xảy ra khi a=x=1; b=y=2 và c=z=3

30 tháng 12 2018

\(a^2-2a+b^2+4b+4c^2-4c+6=0\)'

\(\left(a^2-2a+1\right)+\left(b^2+4b+4\right)+\left(4c^2-4c+1\right)=0\)

\(\left(a-1\right)^2+\left(b+2\right)^2+\left(2c-1\right)^2=0\)

b tự làm nốt nhé~

30 tháng 12 2018

\(M=\left(x+3\right)\left(x^2-3x+9\right)-\left(x^3+54-x\right)\)

\(M=x^3+3^3-x^3-54+x\)

\(M=x+27-54\)

\(M=x+27-54\)

\(M=7-27\)

\(M=-20\)