K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
19 tháng 9 2019
a) Đặt tính đa thức chia đa thức ta được:
\(f\left(x\right):g\left(x\right)=\left(x^2+x\right)\).
b) Thương f(x) : g(x) =0
<=> \(x^2+x=0\)
<=> x ( x + 1 ) = 0
<=> x =0 hoặc x+1 =0
<=> x=0 hoặc x=-1.
c)
Ta có: \(f\left(x\right):g\left(x\right)=\left(x^2+x\right)=x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}=\left(x+\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\).
Gía trị nhỏ nhất là -1/4 đạt tại x = -1/2.
( Cảm ơn em đã giúp đỡ các bạn khác :)
\(f\left(x\right)=\left(x-1\right)\left(x+2\right)-\left(x-3\right)\)
\(=x^2+x-2-x+3\)
\(=x^2+1>1\forall x\)
Vậy \(f\left(x\right)\)vô nghiệm
\(g\left(x\right)=\left(3-x\right)\left(4+x\right)-\left(13-x\right)\)
\(=12-x-x^2-13+x\)
\(=-x^2-1\)
\(=-\left(x^2+1\right)< -1\forall x\)
Vậy \(g\left(x\right)\)vô nghiệm