Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ví dụ cho bạn một bài, còn lại tương tự.
a)Ta có: \(3x^4-5x^3+8x^2-5x+3\)
\(=3x^2\left(x-\frac{5}{6}\right)^2+\frac{71}{12}\left(x-\frac{30}{71}\right)^2+\frac{138}{71}>0\)
Vậy phương trình vô nghiệm.
1/ \(A=3\left(x+1\right)^2-\left(x+3\right)^2\)
\(=3\left(x^2+2x+1\right)-\left(x^2+6x+9\right)\)
\(=3x^2+6x+3-x^2-6x-9\)
\(=2x^2-6\)
Vậy biểu thức A vẫn phụ thuộc vào biến -_-
2/ \(B=\left(x-2\right)^2-\left(x-4\right)x\)
\(=x^2-4x+4-x^2-4x\)
\(=4\)
Vậy biểu thức B không phụ thuộc vào biến (đpcm)
3/ \(C=3\left(x+2\right)^2-3\left(x^2-4x\right)\)
\(=3\left(x^2+4x+4\right)-3x^2+12x\)
\(=3x^2+12x+12-3x^2+12x\)
\(=24x+12\)
Vậy biểu thức C vẫn phụ thuộc vào biến -_-
4/ \(D=3x\left(x-2\right)\left(x+2\right)-x\left(3x+3\right)\)
\(=3x\left(x^2-4\right)-3x^2-3x\)
\(=3x^3-12x-3x^2-3x\)
\(=3x^3-3x^2-15x\)
Vậy biểu thức D vẫn phụ thuộc vào biến -_-
5/ \(E=x^2-\left(x+1\right)\left(x-1\right)+5\)
\(=x^2-\left(x^2-1\right)+5\)
\(=x^2-x^2+1+5\)
\(=6\)
Vậy biểu thức E không phụ thuộc vào biến.
1)
a) \(x\left(2x+1\right)-x^2\left(x+2\right)+\left(x^3-x+3\right)\)
\(=2x^2+x-x^3-2x^2+x^3-x+3=3\)
=>đpcm
b) \(4\left(x-6\right)-x^2\left(2+3x\right)+x\left(5x-4\right)+3x^2\left(x-1\right)\)
\(=4x-24-2x^2-3x^3+5x^2-4x+3x^3-3x^2=-24\)
=>đpcm
2,
a) \(5x\left(12x+7\right)-3x\left(20x-5\right)=-100\)
\(\Leftrightarrow60x^2+35x-60x^2+15x=-100\)
\(\Leftrightarrow50x=-100\)
\(\Leftrightarrow x=-2\)
b) \(0,6x\left(x-0,5\right)-0,3x\left(2x+1,3\right)=0,138\)
\(\Leftrightarrow0,6x^2-0,3x-0,6x^2-0,39x=0,138\)
\(\Leftrightarrow-0,69x=0,138\)
\(\Leftrightarrow x=-0,2\)
Câu 1:
a)\(x\left(2x+1\right)-x^2\left(x+2\right)+\left(x^2-x+3\right)\)
\(=2x^2+x-x^3-2x^2+x^2-x+3\)
\(=x^3+3\)(ko thể CM)
b)\(4\left(x-6\right)-x^2\left(2+3x\right)+x\left(5x-4\right)+3x^2\left(x-1\right)\)
\(=4x-24-2x^2-3x^3+5x^2-4x+3x^3-3x^2\)
\(=-24\)(đpcm)
a, \(5\left(2x-1\right)^2+4\left(x-1\right)\left(x+3\right)-2\left(5-3x\right)^2\)
\(=20x^2-20x+5+4x^2+12x-4x-12-50+60x-18x^2\)
\(=6x^2+48x-57\)
b, \(\left(9x-1\right)^2+\left(1-5x\right)^2+2\left(9x-1\right)\left(1-5x\right)\)
\(=81x^2-18x+1+1-10x+25x^2+18x-90x^2-2+10x\)
\(=16x^2\)
c;d;e;f tự làm, đầu I giữ lấy còn trường tồn:)
\(5\left(2x-1\right)^2+4\left(x-1\right)\left(x+3\right)-2\left(5-3x\right)^2\)
\(=5\left(4x^2-4x+1\right)+4\left(x^2+2x-3\right)-2\left(25-30x+9x^2\right)\)
\(=20x^2-20x+5+4x^2+8x-12-50+60x-18x^2\)
\(=\left(20x^2+4x^2-18x^2\right)+\left(60x+8x-20x\right)+\left(5-12-50\right)\)
\(=6x^2+48x-57\)
Bài 1:
a, x2-3xy-10y2
=x2+2xy-5xy-10y2
=(x2+2xy)-(5xy+10y2)
=x(x+2y)-5y(x+2y)
=(x+2y)(x-5y)
b, 2x2-5x-7
=2x2+2x-7x-7
=(2x2+2x)-(7x+7)
=2x(x+1)-7(x+1)
=(x+1)(2x-7)
Bài 2:
a, x(x-2)-x+2=0
<=>x(x-2)-(x-2)=0
<=>(x-2)(x-1)=0
<=>\(\orbr{\begin{cases}x-2=0\\x-1=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=2\\x=1\end{cases}}\)
b, x2(x2+1)-x2-1=0
<=>x2(x2+1)-(x2+1)=0
<=>(x2+1)(x2-1)=0
<=>x2+1=0 hoặc x2-1=0
1, x2+1=0 2, x2-1=0
<=>x2= -1(loại) <=>x2=1
<=>x=1 hoặc x= -1
c, 5x(x-3)2-5(x-1)3+15(x+2)(x-2)=5
<=>5x(x-3)2-5(x-1)3+15(x2-4)=5
<=>5x(x2-6x+9)-5(x3-3x2+3x-1)+15x2-60=5
<=>5x3-30x2+45x-5x3+15x2-15x+5+15x2-60=5
<=>30x-55=5
<=>30x=55+5
<=>30x=60
<=>x=2
d, (x+2)(3-4x)=x2+4x+4
<=>(x+2)(3-4x)=(x+2)2
<=>(x+2)(3-4x)-(x+2)2=0
<=>(x+2)(3-4x-x-2)=0
<=>(x+2)(1-5x)=0
<=>\(\orbr{\begin{cases}x+2=0\\1-5x=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\-5x=-1\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\x=\frac{-1}{-5}\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\x=\frac{1}{5}\end{cases}}\)
Bài 3:
a, Sắp xếp lại: x3+4x2-5x-20
Thực hiện phép chia ta được kết quả là x2-5 dư 0
b, Sau khi thực hiện phép chia ta được :
Để đa thức x3-3x2+5x+a chia hết cho đa thức x-3 thì a+15=0
=>a= -15
Ta có: C(x) =\(x^2-9x+20=x^2-4x-5x+20=\left(x-4\right)\left(x-5\right)\)
Vậy nghiệm của C(x) là x\(\in\left\{4;5\right\}\)
Ta có: D(x)\(=4x^2+4x+1=\left(2x+1\right)^2\)
Vậy D(x) có nghiệm x=-1/2
Ta có: E(x)=\(2\left(x-1\right)-5\left(x-2\right)=2x-2-5x +10\)= \(8-3x\)
Vậy E(x) có nghiệm x=8/3
Ta có: F(x)=\(2x^2-5x+2=\left(2x^2-x\right)-\left(4x-2\right)\)= \(\left(x-2\right)\left(2x-1\right)\)
Vậy F(x) có nghiệm là x\(\in\left\{\frac{1}{2};2\right\}\)
\(C\left(x\right)=x^2-9x+20\)
\(C\left(x\right)=x^2-4x-5x+20\)
\(C\left(x\right)=\left(x-4\right)\left(x-5\right)\)
=> nghiệm của phương trình là x = 4 hoặc x = 5
\(D\left(x\right)=4x^2+4x+1\)
\(D\left(x\right)=\left(2x+1\right)^2\)
=> nghiệm của phương trình là x = -1/2
\(E\left(x\right)=2\left(x-1\right)-5\left(x-2\right)\)
\(E\left(x\right)=2x-2-5x+10\)
\(E\left(x\right)=-3x-7\)
=> nghiệm của phương trình là x = -7/3
\(F\left(x\right)=2x^2-5x+2\)
\(F\left(x\right)=2x^2-4x-x+2\)
\(F\left(x\right)=\left(x-2\right)\left(2x-1\right)\)
=> nghiệm của phương trình là x = 2 hoặc x = 1/2
a,\(xy+3x-7y-21\)
\(=x\left(y+3\right)-7\left(y+3\right)\)
\(=\left(y+3\right)\left(x-7\right)\)
\(b,2xy-15-6x+5y\)
\(=\left(2xy-6x\right)+\left(-15+5y\right)\)
\(=2x\left(y-3\right)-5\left(3-y\right)\)
\(=2x\left(y-3\right)+5\left(y-3\right)\)
\(=\left(y-3\right)\left(2x+5\right)\)