K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2021

Theo hệ thức Viète ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=4\\x_1x_2=\frac{c}{a}=m+1\end{cases}}\)

Khi đó x12 + x22 = 0 <=> ( x1 + x2 )2 - 2x1x2 = 0

<=> 42 - 2( m + 1 ) = 0

<=> 16 - 2m - 2 = 0

<=> -2m = -14 <=> m = 7 

Vậy với m = 7 thì phương trình có hai nghiệm thỏa mãn x12 + x22 = 0

4 tháng 6 2021

\(\Delta^'=\left(-1\right)^2-\left(m-1\right)=2-m\)

Để PT có nghiệm thì: \(m\le2\)

Khi đó theo hệ thức viet ta có: \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=m-1\end{cases}}\)

Ta có: \(x_1^4-x_1^3=x_2^4-x_2^3\)

\(\Leftrightarrow\left(x_1^4-x_2^4\right)-\left(x_1^3-x_2^3\right)=0\)

\(\Leftrightarrow\left(x_1-x_2\right)\left(x_1+x_2\right)\left(x_1^2+x_2^2\right)-\left(x_1-x_2\right)\left(x_1^2+x_1x_2+x_2^2\right)=0\)

\(\Leftrightarrow\left(x_1-x_2\right)\left[2\left(x_1^2+x_2^2\right)-x_1^2-x_1x_2-x_2^2\right]=0\)

\(\Leftrightarrow\left(x_1-x_2\right)\left(x_1^2-x_1x_2+x_2^2\right)=0\)

\(\Leftrightarrow\left(x_1-x_2\right)\left[\left(x_1+x_2\right)^2-3x_1x_2\right]=0\)

\(\Leftrightarrow\left(x_1-x_2\right)\left[4-3\left(m-1\right)\right]=0\)

Nếu \(x_1-x_2=0\Rightarrow x_1=x_2=1\Rightarrow m=1\left(tm\right)\)

Nếu \(4-3\left(m-1\right)=0\Rightarrow m=\frac{7}{3}\left(ktm\right)\)

Vậy m = 1

Ta có phương trình \(x^2-5x+m=0\)

Để PT có nghiệm thì \(\Delta=25-4m\ge0\)

\(\Rightarrow m\le\frac{25}{4}\)

Theo hệ thức Vi-et ta có \(\hept{\begin{cases}x_1+x_2=5\\x_1x_2=m\end{cases}}\)

do đó \(\left|x_1-x_2\right|=5\Leftrightarrow\left(x_1-x_2\right)^2=25\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_2x_2=25\)

\(\Leftrightarrow4x_1x_2=0\)

\(\Rightarrow m=0\)(TM)

Vậy..........

26 tháng 3 2021

Theo Vi et ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-\frac{-2m-8}{1}=4m+8\\x_1x_2=\frac{c}{a}=m^2-8\end{cases}}\)

mà \(\left(x_1+x_2\right)^2=4m+8\Rightarrow x_1^2+x_2^2=4m+8-2x_1x_2\)

\(\Rightarrow x_1^2+x_2^2=4m+8-2\left(m^2-8\right)=4m+8-2m^2+16=4m+24-2m^2\)

hay \(A=-2m^2+4m+24-\left(x_1+x_2\right)\)

\(=-2m^2+4m+24-4m-8=-2m^2+16\le16\)

Dấu ''='' xảy ra khi m = 0 

6 tháng 1 2017

\(x^2-2\left(m+1\right)x+3\left(m+1\right)-3=0\)

\(x^2-2nx+3n+3=\left(x-n\right)^2-\left(n^2-3n+3\right)=0\)\(\left(x-n\right)^2=\left(n-\frac{3}{2}\right)^2+\frac{3}{4}=\frac{\left(2n-3\right)^2+3}{4}>0\forall n\) vậy luôn tồn tại hai nghiệm

\(\orbr{\begin{cases}x_1=\frac{n-\sqrt{\left(2n-3\right)^2+3}}{2}\\x_2=\frac{n+\sqrt{\left(2n-3\right)^2+3}}{2}\end{cases}}\)

6 tháng 1 2017

a) \(\frac{x_1}{x_2}=\frac{4x_1-x_2}{x_1}\Leftrightarrow\frac{x_1^2-4x_1x_2+x_2^2}{x_1x_2}=0\)

\(x_1x_2=n^2-\frac{\left(2n-3\right)^2+3}{4}=\frac{4n^2-4n^2+12n-9-3}{4}=3n-3\)

với n=1 hay m=0 : Biểu thức cần C/m không tồn tại => xem lại đề

4 tháng 4 2019

\(\Delta'=\left(m-1\right)^2-m^2+m-1=m^2-2m+1-m^2+m-1=-m.\)

Để phương trình có 2 nghiệm thì \(\Delta'\ge0\Leftrightarrow-m\ge0\Leftrightarrow m\le0\)

Theo vi ét:

\(\hept{\begin{cases}x_1+x_2=-2\left(m-1\right)\\x_1.x_2=m^2-m+1=\left(m-\frac{1}{2}\right)^2+\frac{3}{4}>0\end{cases}}\)

\(\left|x_1\right|+\left|x_2\right|=4\Leftrightarrow x_1+x_2+2\left|x_1.x_2\right|=16\)

\(\Leftrightarrow1-2m+2\left|m^2-m+1\right|=16\)

\(\Leftrightarrow1-2m+2m^2-2m+2=16\)(Vì \(m^2-m+1>0\Rightarrow\left|m^2-m+1\right|=m^2-m+1\))

\(\Leftrightarrow2m^2-4m-13=0\)

Đến đây bạn tự giải \(\Delta\)tìm m đối chiếu điều kiện là ok.

4 tháng 4 2022

Phương trình 2 nghiệm phân biệt khi 

\(\Delta=\left(1-m\right)^2-4\left(-m\right).1=\left(m+1\right)^2>0\)

\(\Leftrightarrow m\ne-1\)

Hệ thức Vière : \(\hept{\begin{cases}x_1+x_2=m-1\\x_1.x_2=-m\end{cases}}\)

Khi đó \(x_1\left(5-x_2\right)\ge5\left(3-x_2\right)-36\)

<=> \(-x_1x_2+5\left(x_1+x_2\right)\ge-21\)

<=> \(-\left(-m\right)+5\left(m-1\right)\ge-21\)

\(\Leftrightarrow6m\ge-16\Leftrightarrow m\ge-\frac{8}{3}\)

Kết hợp điều kiện => \(\hept{\begin{cases}m\ge-\frac{8}{3}\\m\ne-1\end{cases}}\)thì thỏa mãn bài toán 

NV
5 tháng 4 2022

\(\Delta=\left(1-m\right)^2+4m=\left(m+1\right)^2>0\Rightarrow m\ne-1\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m-1\\x_1x_2=-m\end{matrix}\right.\)

\(x_1\left(5-x_2\right)\ge5\left(3-x_2\right)-36\)

\(\Leftrightarrow5\left(x_1+x_2\right)-x_1x_2\ge-21\)

\(\Leftrightarrow5\left(m-1\right)+m\ge-21\)

\(\Leftrightarrow m\ge-\dfrac{8}{3}\)

Kết hợp điều kiện ban đầu ta được: \(\left\{{}\begin{matrix}m\ne-1\\m\ge-\dfrac{8}{3}\end{matrix}\right.\)

Ta có : \(x^2-5x+m=0\left(a=1;b=-5;c=m\right)\)

Theo hệ thức Vi et ta có : \(x_1+x_2=5;x_1x_2=m\)

Theo bài ra ta có : \(x_1^2+x_2^2+7=2\sqrt{x_2^2-3}+6x_1\)

Thay \(x_1;x_2\)lần lượt là \(x;y\)thì ta có phương trình mới :

\(x^2+y^2+7=2\sqrt{y^2-3}+6x\)

\(\Leftrightarrow\left(x+y\right)^2-2xy+7=2\sqrt{y^2-3}+6x\)

\(\Leftrightarrow\left(x+y\right)^2-2xy+7=2\sqrt{y^2-\sqrt{3}^2}+6x\)

\(\Leftrightarrow\left(x+y\right)^2-2xy+7=2\sqrt{y-\sqrt{3}}^2+6x\)

\(\Leftrightarrow\left(x+y\right)^2-2xy+7=2y-2\sqrt{3}+6x\)

\(\Leftrightarrow\left(x+y\right)^2-2xy+7=2\left(y-\sqrt{3}+3x\right)\)

\(\Leftrightarrow\frac{\left(x+y\right)^2-2xy+7}{2}=y-\sqrt{3}+3x\)

Mời idol về giải chứ chưa đi sâu vào mấy cái căn này lắm, phá mãi mới ra mà chả biết nhóm vào đâu.