Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tớ chứng minh phần a hơi ngược tí nhé ( cminh vế sau trước)
a) Ta có: AB = AE + EB; AC = AF + FC
Mà AB = AC (gt)
AE = AF (gt)
=> EB = FC
Vì tam giác ABC có AB = AC => tam giác ABC cân tại A
=> góc B = góc C (tính chất tam giác cân)
Xét tam giác BEC và tam giác CFB có:
EB = FC (cmt)
góc B = góc C (cmt)
BC chung
=> tam giác BEC = tam giác CFB (c.g.c)
=> BF = CE (2 góc T.Ứ) ; => góc BEC = góc CFB
b) C1: Xét tam giác IBE và tam giác ICF có:
IE = IF (gt)
góc BEC = góc CFB (cmt)
EB = FC (cmt)
=> tam giác IBE = tam giác ICF (c.g.c)
C2: Ta có BF = IB + IF
CE = CI + IE
Mà BF = CE (cmt)
IE = IF (gt)
=> IB = IC
Ta có góc BIE = góc CIF ( 2 góc đối đỉnh)
Xét tam giác IBE và tam giác ICF có:
IE = IF (gt)
góc BIE = góc CIF (cmt)
IB = IC (cmt)
=> tam giác IBE = tam giác ICF (c.g.c)
a) Xét tam giác ADB và AEC có:
AD = AE (gt)
AB = AC (gt)
Góc A chung
\(\Rightarrow\Delta ADB=\Delta AEC\left(c-g-c\right)\Rightarrow BD=CE\)
b) Do AB = AC; AD = AE nên BE = DC
Xét tam giác CEB và BDC có:
CE = BD (cma)
Cạnh BC chung
BC = CD (cmt)
\(\Rightarrow\Delta CEB=\Delta BDC\left(c-c-c\right)\)
c) Do \(\Delta ADB=\Delta AEC\Rightarrow\widehat{EBI}=\widehat{DCI}\)
Do \(\Delta CEB=\Delta BDC\Rightarrow\widehat{BEI}=\widehat{CDI}\)
Xét tam giác BIE và tam giác CID có:
\(\widehat{EBI}=\widehat{DCI}\)
\(\widehat{BEI}=\widehat{CDI}\)
BE = CD
\(\Rightarrow\Delta BIE=\Delta CID\left(g-c-g\right)\)
d) Do \(\Delta BIE=\Delta CID\Rightarrow IB=IC\)
Lại có AB = AC nên IA là trung trực của BC
Vậy IA đi qua trung điểm F của BC hay A, I, F thẳng hàng.
Em tham khảo tại đây nhé.
Câu hỏi của Phạm Bá Gia Nhất - Toán lớp 7 - Học toán với OnlineMath
a: Xét ΔABD và ΔACD có
AB=AC
AD chung
BD=CD
Do đó: ΔABD=ΔACD
Em tham khảo tại đây nhé.
Câu hỏi của Phạm Bá Gia Nhất - Toán lớp 7 - Học toán với OnlineMath