K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2018

Tớ chứng minh phần a hơi ngược tí nhé ( cminh vế sau trước)

a) Ta có: AB = AE + EB;   AC = AF + FC

Mà AB = AC (gt)

      AE = AF (gt)

=>  EB = FC

Vì tam giác ABC có AB = AC => tam giác ABC cân tại A

=> góc B = góc C (tính chất tam giác cân)

Xét tam giác BEC và tam giác CFB có:

EB = FC (cmt)

góc B = góc C (cmt)

BC chung

=> tam giác BEC = tam giác CFB (c.g.c)

=> BF = CE (2 góc T.Ứ) ; => góc BEC = góc CFB

b)  C1: Xét tam giác IBE và tam giác ICF có:

IE = IF (gt)

góc BEC = góc CFB (cmt)

EB = FC (cmt)

=> tam giác IBE = tam giác ICF (c.g.c)

C2:  Ta có BF = IB + IF

                 CE = CI + IE

Mà BF = CE (cmt)

      IE = IF (gt)

=> IB = IC

Ta có góc BIE = góc CIF ( 2 góc đối đỉnh)

Xét tam giác IBE và tam giác ICF có:

IE = IF (gt)

góc BIE = góc CIF (cmt)

IB = IC (cmt)

=> tam giác IBE = tam giác ICF (c.g.c)

13 tháng 9 2021

EdeeS

28 tháng 2 2018

a) Xét tam giác ADB và AEC có:

AD = AE (gt)

AB = AC (gt)

Góc A chung

\(\Rightarrow\Delta ADB=\Delta AEC\left(c-g-c\right)\Rightarrow BD=CE\)

b) Do AB = AC; AD = AE nên BE = DC

Xét tam giác CEB và BDC có:

CE = BD (cma)

Cạnh BC chung

BC = CD (cmt)

\(\Rightarrow\Delta CEB=\Delta BDC\left(c-c-c\right)\)

c) Do \(\Delta ADB=\Delta AEC\Rightarrow\widehat{EBI}=\widehat{DCI}\)

Do \(\Delta CEB=\Delta BDC\Rightarrow\widehat{BEI}=\widehat{CDI}\)

Xét tam giác BIE và tam giác CID có:

\(\widehat{EBI}=\widehat{DCI}\)

\(\widehat{BEI}=\widehat{CDI}\)

BE = CD

\(\Rightarrow\Delta BIE=\Delta CID\left(g-c-g\right)\)

d) Do \(\Delta BIE=\Delta CID\Rightarrow IB=IC\)

Lại có AB = AC nên IA là trung trực của BC

Vậy IA đi qua trung điểm F của BC hay A, I, F thẳng hàng.

28 tháng 2 2018

Em tham khảo tại đây nhé.

Câu hỏi của Phạm Bá Gia Nhất - Toán lớp 7 - Học toán với OnlineMath

3 tháng 11 2019

câu trả lời là gì

26 tháng 8 2022

Bạn làm ny mik đi

 

22 tháng 12 2021

a: Xét ΔABD và ΔACD có

AB=AC

AD chung

BD=CD

Do đó: ΔABD=ΔACD

28 tháng 2 2018

Em tham khảo tại đây nhé.

Câu hỏi của Phạm Bá Gia Nhất - Toán lớp 7 - Học toán với OnlineMath