Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(y=x^2+2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}-\dfrac{41}{4}\)
\(=\left(x+\dfrac{5}{2}\right)^2-\dfrac{41}{4}\ge-\dfrac{41}{4}\forall x\)
Dấu '=' xảy ra khi x=-5/2
2: \(y=2\left(x^2-2x+\dfrac{5}{2}\right)\)
\(=2\left(x^2-2x+1+\dfrac{3}{2}\right)\)
\(=2\left(x-1\right)^2+3\ge3\forall x\)
Dấu '=' xảy ra khi x=1
3: \(y=x^2-4x+4-3=\left(x-2\right)^2-3\ge-3\forall x\)
Dấu '=' xảy ra khi x=2
4: \(2x^2-8x+3\)
\(=2\left(x^2-4x+\dfrac{3}{2}\right)\)
\(=2\left(x^2-4x+4-\dfrac{5}{2}\right)\)
\(=2\left(x-2\right)^2-5\ge-5\forall x\)
Dấu '=' xảy ra khi x=2
Đăng từng bài thôi nha bạn
Bài 1 : Năm nay mới lên lớp 8 -_-
Bài 2 :
\(a)\)
* Câu A :
\(A=x^2+4x-7\)
\(A=\left(x^2+4x+4\right)-11\)
\(A=\left(x+2\right)^2-11\ge-11\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=-2\) ( ở đây nhiều bài quá nên mình làm tắt cho nhanh, bạn nhớ trình bày rõ ra nhé )
Vậy GTNN của \(A\) là \(-11\) khi \(x=-2\)
* Câu B :
\(B=2x^2-3x+5\)
\(2B=4x^2-6x+10\)
\(2B=\left(4x^2-6x+1\right)+9\)
\(2B=\left(2x-1\right)^2+9\ge9\)
\(B=\frac{\left(2x-1\right)^2+9}{2}\ge\frac{9}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=\frac{1}{2}\)
Vậy GTNN của \(B\) là \(\frac{9}{2}\) khi \(x=\frac{1}{2}\)
* Câu C :
\(C=x^4-3x^2+1\)
\(C=\left(x^4-3x^2+\frac{9}{4}\right)-\frac{5}{4}\)
\(C=\left(x^2-\frac{3}{2}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\orbr{\begin{cases}x=\sqrt{\frac{3}{2}}\\x=-\sqrt{\frac{3}{2}}\end{cases}}\)
Vậy GTNN của \(C\) là \(-\frac{5}{4}\) khi \(x=\sqrt{\frac{3}{2}}\) hoặc \(x=-\sqrt{\frac{3}{2}}\)
Chúc bạn học tốt ~
1.
Xét hiệu:
\(x^3+y^3-\left(x^2y+xy^2\right)=\left(x^3-x^2y\right)-\left(xy^2+y^3\right)\)
\(=x^2\left(x-y\right)-y^2\left(x-y\right)=\left(x-y\right)\left(x^2-y^2\right)\)
\(=\left(x-y\right)\left(x-y\right)\left(x+y\right)=\left(x-y\right)^2\left(x+y\right)\ge0\), Với mọi x, y không âm
Vậy \(x^3+y^3\ge x^2y+xy^2\)với mọi x, y không âm
2. \(111\left(x-2\right)\ge1998\Leftrightarrow x-2\ge\frac{1998}{11}\Leftrightarrow x\ge\frac{1998}{11}+2=\frac{2020}{11}\)
3. Xét hiệu:
\(\frac{a-b}{b}-1=\frac{a}{b}-1-1=\frac{a}{b}-2>\frac{2b}{b}-2=2-2=0\)Với mọi , a, b dương
Vậy \(\frac{a-b}{b}>1\)với mọi a, b dương
4) xét hiệu:
\(x^2+y^2+z^2+14-\left(4x+2y+6z\right)\ge0\)\
<=> \(x^2-4x+4+y^2-2y+1+z^2-6z+9=\left(x-2\right)^2+\left(y-1\right)^2+\left(z-3\right)^2\ge0\)luôn đúng vs mọi x, y, z
Vậy suy ra điều cần chứng minh
\(P=\left(x-y\right)^2+\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)-4x^2=\left(x-y-x-y\right)^2-\left(2x\right)^2=\left(-2y\right)^2-\left(2x\right)^2\)
\(=\left(2y-2x\right)\left(2y+2x\right)=2\left(y-x\right)2\left(y+x\right)=4\left(x+y\right)\left(y-x\right)\)
\(x^3-x^2y+3x-3y=x^2\left(x-y\right)+3\left(x-y\right)=\left(x-y\right)\left(x^2+3\right)\)
\(x^3-2x^2-4xy^2+x=x\left(x^2-2x+1-4y^2\right)=x\left[\left(x-1\right)^2-\left(2y\right)^2\right]=x\left(x+2y-1\right)\left(x-2y-1\right)\)
\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-8=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-8\)
Đặt \(x^2+7x+10=t\), ta có:
\(t\left(t+2\right)-8=t^2+2t-8=t^2-2t+4t-8=t\left(t-2\right)+4\left(t-2\right)=\left(t-2\right)\left(t+4\right)\)
\(=\left(x^2+7x+10+4\right)\left(x^2+7x+10-2\right)=\left(x^2+7x+14\right)\left(x^2+7x-8\right)\)
c) Ta có a + b > 1 > 0 (1)
Bình phương 2 vế: \(\left(a+b\right)^2>1\) \(\Leftrightarrow\) \(a^2+2ab+b^2>1\) (2)
Mặt khác \(\left(a-b\right)^2\ge0\) \(\Rightarrow\) \(a^2-2ab+b^2\ge0\) (3)
Cộng từng vế của (2) và (3): \(2\left(a^2+b^2\right)>1\) \(\Rightarrow\) \(a^2+b^2>\frac{1}{2}\) (4)
Bình phương 2 vế của (4): \(a^4+2a^2b^2+b^4>\frac{1}{4}\) (5)
Mặt khác \(\left(a^2-b^2\right)^2\ge0\) \(\Rightarrow\) \(a^4-2a^2b^2+b^4\ge0\) (6)
Cộng từng vế của (5) và (6): \(2\left(a^4+b^4\right)>\frac{1}{4}\) \(\Rightarrow\) \(a^4+b^4>\frac{1}{8}\) (đpcm).
1/ Áp dụng hẳng đẳng thức \(\left(a-b\right)\left(a+b\right)=a^2-b^2\) là ra bạn nhé
\(A=\left[\left(3^2-1\right)\left(3^2+1\right)\right]\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\left[\left(3^4-1\right)\left(3^4+1\right)\right]\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\left[\left(3^8-1\right)\left(3^8+1\right)\right]\left(3^{16}+1\right)\left(3^{32}+1\right)\)
\(=\left[\left(3^{16}-1\right)\left(3^{16}+1\right)\right]\left(3^{32}+1\right)\)
\(=\left(3^{32}-1\right)\left(3^{32}+1\right)\)
\(=3^{64}-1\)
Bài 1:
\(y=-\left(x^2-4x\right)=-\left(x^2-4x+4\right)+4=-\left(x-2\right)^2+4\le4\forall x\)
Dấu '=' xảy ra khi x=2
Bài 2:
\(y=-\left(x^2+3x-2\right)\)
\(=-\left(x^2+2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{17}{4}\right)\)
\(=-\left(x+\dfrac{3}{2}\right)^2+\dfrac{17}{4}\le\dfrac{17}{4}\forall x\)
Dấu '=' xảy ra khi x=-3/2
Bài 3:
\(y=-\left(x^2+6x-4\right)\)
\(=-\left(x^2+6x+9-13\right)\)
\(=-\left(x+3\right)^2+13\le13\forall x\)
Dấu '=' xảy ra khi x=-3